論文の概要: Predicting Molecular Ground-State Conformation via Conformation Optimization
- arxiv url: http://arxiv.org/abs/2410.09795v1
- Date: Sun, 13 Oct 2024 10:48:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 04:52:52.355676
- Title: Predicting Molecular Ground-State Conformation via Conformation Optimization
- Title(参考訳): コンフォーメーション最適化による分子基底状態の予測
- Authors: Fanmeng Wang, Minjie Cheng, Hongteng Xu,
- Abstract要約: 本稿では,分子基底状態のコンフォーメーションをコンフォーメーション最適化の観点から予測するConfOptという新しいフレームワークを提案する。
トレーニング中、ConfOptは予測された原子3D座標と対応する原子間距離を同時に最適化し、強い予測モデルを生み出した。
- 参考スコア(独自算出の注目度): 24.18678055892153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting ground-state conformation from the corresponding molecular graph is crucial for many chemical applications, such as molecular modeling, molecular docking, and molecular property prediction. Recently, many learning-based methods have been proposed to replace time-consuming simulations for this task. However, these methods are often inefficient and sub-optimal as they merely rely on molecular graph information to make predictions from scratch. In this work, considering that molecular low-quality conformations are readily available, we propose a novel framework called ConfOpt to predict molecular ground-state conformation from the perspective of conformation optimization. Specifically, ConfOpt takes the molecular graph and corresponding low-quality 3D conformation as inputs, and then derives the ground-state conformation by iteratively optimizing the low-quality conformation under the guidance of the molecular graph. During training, ConfOpt concurrently optimizes the predicted atomic 3D coordinates and the corresponding interatomic distances, resulting in a strong predictive model. Extensive experiments demonstrate that ConfOpt significantly outperforms existing methods, thus providing a new paradigm for efficiently and accurately predicting molecular ground-state conformation.
- Abstract(参考訳): 対応する分子グラフから基底状態のコンフォメーションを予測することは、分子モデリング、分子ドッキング、分子特性予測などの多くの化学応用にとって重要である。
近年,この作業に要する時間的シミュレーションを代替する学習手法が数多く提案されている。
しかしながら、これらの手法はしばしば非効率で準最適であり、分子グラフ情報にのみ依存してゼロから予測を行う。
本研究では,分子の低品質なコンフォメーションが容易に利用できることを考慮し,コンフォメーション最適化の観点から分子基底状態コンフォメーションを予測するConfOptという新しいフレームワークを提案する。
具体的には、ConfOptは分子グラフとそれに対応する低品質な3Dコンホメーションを入力として取り、その後、分子グラフの誘導の下で低品質なコンホメーションを反復的に最適化することで基底状態コンホメーションを導出する。
ConfOptはトレーニング中、予測された原子3D座標と対応する原子間距離を同時に最適化し、強い予測モデルをもたらす。
大規模な実験により、ConfOptは既存の方法よりも大幅に優れており、分子基底状態の配座を効率的に正確に予測するための新しいパラダイムを提供する。
関連論文リスト
- UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Diffusion-Driven Generative Framework for Molecular Conformation
Prediction [0.66567375919026]
機械学習の急速な進歩は、この文脈における予測モデリングの精度に革命をもたらした。
本研究は,最先端な生成手法を提案する。
メソッドは原子を独立した実体とみなし、拡散の逆転を導くのに優れている。
論文 参考訳(メタデータ) (2023-12-22T11:49:39Z) - Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
Wavefunctions [5.145741425164946]
深層学習に基づく変分モンテカルロ(DL-VMC)は、最近、精度の点で従来の手法よりも優れているが、計算コストが大きい。
本稿では,大規模かつ化学的に多様な分子集合上での自己教師付き波動関数最適化を用いたDL-VMCモデルを提案する。
このモデルを最適化せずに新しい分子に適用すると、波動関数や絶対エネルギーが得られ、CCSD(T)-2Zのような確立された手法よりも優れる。
論文 参考訳(メタデータ) (2023-07-15T09:56:22Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
分子配座のログ密度の勾配を推定する新しいモデルScoreMDを提案する。
複数のアーキテクチャの改善により、MD17とC7O2H10の異性体において最先端のベースラインよりも優れています。
この研究は、新しい物質の加速と薬物発見に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2022-04-19T05:13:46Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
我々は小データ構造における変分推論とグラフ理論に基づく分子生成モデルを開発する。
モデルの性能は、所望の目的特性を持つ分子を生成することによって評価される。
論文 参考訳(メタデータ) (2020-09-29T09:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。