Predicting Molecular Ground-State Conformation via Conformation Optimization
- URL: http://arxiv.org/abs/2410.09795v2
- Date: Wed, 30 Oct 2024 14:33:37 GMT
- Title: Predicting Molecular Ground-State Conformation via Conformation Optimization
- Authors: Fanmeng Wang, Minjie Cheng, Hongteng Xu,
- Abstract summary: We propose a novel framework called ConfOpt to predict molecular ground-state conformation from the perspective of conformation optimization.
During training, ConfOpt concurrently optimize the predicted atomic 3D coordinates and the corresponding interatomic distances, resulting in a strong predictive model.
- Score: 24.18678055892153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting ground-state conformation from the corresponding molecular graph is crucial for many chemical applications, such as molecular modeling, molecular docking, and molecular property prediction. Recently, many learning-based methods have been proposed to replace time-consuming simulations for this task. However, these methods are often inefficient and sub-optimal as they merely rely on molecular graph information to make predictions from scratch. In this work, considering that molecular low-quality conformations are readily available, we propose a novel framework called ConfOpt to predict molecular ground-state conformation from the perspective of conformation optimization. Specifically, ConfOpt takes the molecular graph and corresponding low-quality 3D conformation as inputs, and then derives the ground-state conformation by iteratively optimizing the low-quality conformation under the guidance of the molecular graph. During training, ConfOpt concurrently optimizes the predicted atomic 3D coordinates and the corresponding interatomic distances, resulting in a strong predictive model. Extensive experiments demonstrate that ConfOpt significantly outperforms existing methods, thus providing a new paradigm for efficiently and accurately predicting molecular ground-state conformation.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - REBIND: Enhancing ground-state molecular conformation via force-based graph rewiring [38.77055275481021]
We propose REBIND, a novel framework that rewires molecular graphs by adding edges based on the Lennard-Jones potential to capture non-bonded interactions for low-degree atoms.
Experimental results demonstrate that REBIND significantly outperforms state-of-the-art methods across various molecular sizes.
arXiv Detail & Related papers (2024-10-04T16:02:33Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - Diffusion-Driven Generative Framework for Molecular Conformation
Prediction [0.66567375919026]
The rapid advancement of machine learning has revolutionized the precision of predictive modeling in this context.
This research introduces a cutting-edge generative framework named method.
Method views atoms as discrete entities and excels in guiding the reversal of diffusion.
arXiv Detail & Related papers (2023-12-22T11:49:39Z) - SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
Molecular Property Prediction [1.534667887016089]
We present a novel method for generating molecular fingerprints using multi parameter persistent homology (MPPH)
This technique holds considerable significance for drug discovery and materials science, where precise molecular property prediction is vital.
We demonstrate its superior performance over existing state-of-the-art methods in predicting molecular properties through extensive evaluations on the MoleculeNet benchmark.
arXiv Detail & Related papers (2023-12-12T09:33:54Z) - Molecular Conformation Generation via Shifting Scores [21.986775283620883]
We propose a novel molecular conformation generation approach driven by the observation that the disintegration of a molecule can be viewed as casting increasing force fields to its composing atoms.
The corresponding generative modeling ensures a feasible inter-atomic distance geometry and exhibits time reversibility.
arXiv Detail & Related papers (2023-09-12T07:39:43Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - An End-to-End Framework for Molecular Conformation Generation via
Bilevel Programming [71.82571553927619]
We propose an end-to-end solution for molecular conformation prediction called ConfVAE.
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
arXiv Detail & Related papers (2021-05-15T15:22:29Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
We develop a molecular generative model based on variational inference and graph theory in the small data regime.
The model's performance is evaluated by generating molecules with desired target properties.
arXiv Detail & Related papers (2020-09-29T09:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.