論文の概要: WGFormer: An SE(3)-Transformer Driven by Wasserstein Gradient Flows for Molecular Ground-State Conformation Prediction
- arxiv url: http://arxiv.org/abs/2410.09795v4
- Date: Thu, 13 Feb 2025 12:35:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:45:55.629543
- Title: WGFormer: An SE(3)-Transformer Driven by Wasserstein Gradient Flows for Molecular Ground-State Conformation Prediction
- Title(参考訳): WGFormer:分子基底状態変換予測のためのワッサースタイン勾配流駆動SE(3)変換器
- Authors: Fanmeng Wang, Minjie Cheng, Hongteng Xu,
- Abstract要約: 分子基底状態のコンフォメーションの予測は多くの化学応用において重要である。
本稿では,エネルギーに基づくシミュレーションと学習に基づく戦略を橋渡しする,新しい効果的手法を提案する。
我々の手法は一貫して最先端の競争相手を上回っている。
- 参考スコア(独自算出の注目度): 24.18678055892153
- License:
- Abstract: Predicting molecular ground-state conformation (i.e., energy-minimized conformation) is crucial for many chemical applications such as molecular docking and property prediction. Classic energy-based simulation is time-consuming when solving this problem while existing learning-based methods have advantages in computational efficiency but sacrifice accuracy and interpretability. In this work, we propose a novel and effective method to bridge the energy-based simulation and the learning-based strategy, which designs and learns a Wasserstein gradient flow-driven SE(3)-Transformer, called WGFormer, for molecular ground-state conformation prediction. Specifically, our method tackles this task within an auto-encoding framework, which encodes low-quality conformations by the proposed WGFormer and decodes corresponding ground-state conformations by an MLP. The architecture of WGFormer corresponds to Wasserstein gradient flows -- it optimizes molecular conformations by minimizing an energy function defined on the latent mixture models of atoms, thereby significantly improving performance and interpretability. Extensive experiments show that our method consistently outperforms state-of-the-art competitors, providing a new and insightful paradigm to predict molecular ground-state conformation.
- Abstract(参考訳): 分子ドッキングや特性予測といった多くの化学応用において、分子基底状態コンホメーション(すなわちエネルギー最小化コンホメーション)の予測が重要である。
古典的なエネルギーベースシミュレーションはこの問題を解決するのに時間を要するが、既存の学習ベースの手法は計算効率には利点があるが、精度と解釈性は犠牲である。
本研究では,WGFormer と呼ばれる Wsserstein 勾配流駆動SE(3)-Transformer を設計・学習し,分子基底状態のコンフォメーション予測を行う,エネルギーベースシミュレーションと学習ベースの戦略を橋渡しする,新しい効果的手法を提案する。
具体的には、提案したWGFormerによる低品質なコンフォメーションを符号化し、MLPによる対応する基底状態コンフォメーションをデコードする自動符号化フレームワークにおいて、この課題に対処する。
WGFormerのアーキテクチャはワッサースタイン勾配流に対応しており、原子の潜在混合モデル上で定義されるエネルギー関数を最小化することで分子配座を最適化し、性能と解釈可能性を大幅に向上する。
大規模実験により,本手法は,分子基底状態の整合性を予測するための新しい,洞察に富んだパラダイムを提供する,最先端の競合よりも一貫して優れていることが示された。
関連論文リスト
- UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Diffusion-Driven Generative Framework for Molecular Conformation
Prediction [0.66567375919026]
機械学習の急速な進歩は、この文脈における予測モデリングの精度に革命をもたらした。
本研究は,最先端な生成手法を提案する。
メソッドは原子を独立した実体とみなし、拡散の逆転を導くのに優れている。
論文 参考訳(メタデータ) (2023-12-22T11:49:39Z) - Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
Wavefunctions [5.145741425164946]
深層学習に基づく変分モンテカルロ(DL-VMC)は、最近、精度の点で従来の手法よりも優れているが、計算コストが大きい。
本稿では,大規模かつ化学的に多様な分子集合上での自己教師付き波動関数最適化を用いたDL-VMCモデルを提案する。
このモデルを最適化せずに新しい分子に適用すると、波動関数や絶対エネルギーが得られ、CCSD(T)-2Zのような確立された手法よりも優れる。
論文 参考訳(メタデータ) (2023-07-15T09:56:22Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
分子配座のログ密度の勾配を推定する新しいモデルScoreMDを提案する。
複数のアーキテクチャの改善により、MD17とC7O2H10の異性体において最先端のベースラインよりも優れています。
この研究は、新しい物質の加速と薬物発見に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2022-04-19T05:13:46Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
我々は小データ構造における変分推論とグラフ理論に基づく分子生成モデルを開発する。
モデルの性能は、所望の目的特性を持つ分子を生成することによって評価される。
論文 参考訳(メタデータ) (2020-09-29T09:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。