論文の概要: Equitable Access to Justice: Logical LLMs Show Promise
- arxiv url: http://arxiv.org/abs/2410.09904v1
- Date: Sun, 13 Oct 2024 16:26:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 04:13:22.770115
- Title: Equitable Access to Justice: Logical LLMs Show Promise
- Title(参考訳): 正義への平等なアクセス:論理的LLMは約束する
- Authors: Manuj Kant, Manav Kant, Marzieh Nabi, Preston Carlson, Megan Ma,
- Abstract要約: 大規模言語モデル(LLM)は、正義へのアクセスを改善する大きな可能性を秘めている。
本稿では,LLMと論理プログラミングの統合について検討し,解析能力の向上について述べる。
我々の目標は、法律や契約を特定の訴訟に適用可能な論理プログラムに変換することです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The costs and complexity of the American judicial system limit access to legal solutions for many Americans. Large language models (LLMs) hold great potential to improve access to justice. However, a major challenge in applying AI and LLMs in legal contexts, where consistency and reliability are crucial, is the need for System 2 reasoning. In this paper, we explore the integration of LLMs with logic programming to enhance their ability to reason, bringing their strategic capabilities closer to that of a skilled lawyer. Our objective is to translate laws and contracts into logic programs that can be applied to specific legal cases, with a focus on insurance contracts. We demonstrate that while GPT-4o fails to encode a simple health insurance contract into logical code, the recently released OpenAI o1-preview model succeeds, exemplifying how LLMs with advanced System 2 reasoning capabilities can expand access to justice.
- Abstract(参考訳): アメリカの司法制度のコストと複雑さは、多くのアメリカ人の法的解決へのアクセスを制限する。
大規模言語モデル(LLM)は、正義へのアクセスを改善する大きな可能性を秘めている。
しかし、一貫性と信頼性が不可欠である法的文脈において、AIとLLMを適用する上での大きな課題は、システム2推論の必要性である。
本稿では,LLMと論理プログラミングの統合による推論能力の向上について検討し,その戦略能力を熟練した弁護士に近づける。
我々の目標は、法律や契約を特定の訴訟に適用可能な論理プログラムに翻訳し、保険契約に焦点をあてることである。
GPT-4oは、単純な健康保険契約を論理コードにエンコードすることができないが、最近リリースされたOpenAI o1-previewモデルは成功し、先進的なシステム2推論能力を持つLCMが正義へのアクセスを拡大する方法を実証している。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
大きな言語モデル(LLM)は、法的理論を完全に理解し、法的推論タスクを実行するのに苦労する可能性がある。
法理論と推論能力に対するLLMの理解をよりよく評価するための課題(電荷予測の解釈)を導入する。
複雑な法的推論機能を改善するためのマルチエージェントフレームワークも提案する。
論文 参考訳(メタデータ) (2024-10-03T14:15:00Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - The Impossibility of Fair LLMs [59.424918263776284]
大規模言語モデル(LLM)の時代において、公正なAIの必要性はますます明確になっている。
我々は、機械学習研究者が公正性を評価するために使った技術フレームワークについてレビューする。
我々は、特定のユースケースにおける公平性を達成するためのより現実的な目標のためのガイドラインを策定する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Intention and Context Elicitation with Large Language Models in the
Legal Aid Intake Process [0.7252027234425334]
本稿では,Large Language Models (LLMs) を用いた概念実証を行い,クライアントの基本的な意図と特定の法的事情を推論する。
また,教師付き微調整学習やオフライン強化学習を用いて意図と文脈の推論を自動的に組み込むための今後の研究方向を提案する。
論文 参考訳(メタデータ) (2023-11-22T10:04:29Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
一般および法的ドメイン LLM は LegalAI の様々なタスクにおいて高いパフォーマンスを示している。
われわれは、法的な実践の論理に基づいて、中国の法的LLMベンチマークLAiWを最初に構築しました。
論文 参考訳(メタデータ) (2023-10-09T11:19:55Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
本稿では,税法の適用におけるLarge Language Models(LLM)の機能について考察する。
実験では,その後のOpenAIモデルリリースにおけるパフォーマンスの向上とともに,新たな法的理解能力を実証した。
発見は、特に拡張の促進と正しい法的文書と組み合わせることで、高いレベルの精度で実行可能であるが、専門家の税務弁護士レベルではまだ実行できないことを示している。
論文 参考訳(メタデータ) (2023-06-12T12:40:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。