論文の概要: GUISE: Graph GaUssIan Shading watErmark
- arxiv url: http://arxiv.org/abs/2410.10178v1
- Date: Mon, 14 Oct 2024 05:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 02:34:41.228269
- Title: GUISE: Graph GaUssIan Shading watErmark
- Title(参考訳): GUISE: Graph GaUssIan Shading watErmark
- Authors: Renyi Yang,
- Abstract要約: 潜在3Dグラフ拡散(LDM-3DG)は、分子グラフ生成分野における上述のアプローチである。
我々の適応は、重複とパディングによる透かし拡散過程を単純化し、様々なメッセージタイプに適応し、適している。
その結果, 透かしを施した分子は, 性能指標10点中9点において, 元の値と比較して統計的に同値であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the expanding field of generative artificial intelligence, integrating robust watermarking technologies is essential to protect intellectual property and maintain content authenticity. Traditionally, watermarking techniques have been developed primarily for rich information media such as images and audio. However, these methods have not been adequately adapted for graph-based data, particularly molecular graphs. Latent 3D graph diffusion(LDM-3DG) is an ascendant approach in the molecular graph generation field. This model effectively manages the complexities of molecular structures, preserving essential symmetries and topological features. We adapt the Gaussian Shading, a proven performance lossless watermarking technique, to the latent graph diffusion domain to protect this sophisticated new technology. Our adaptation simplifies the watermark diffusion process through duplication and padding, making it adaptable and suitable for various message types. We conduct several experiments using the LDM-3DG model on publicly available datasets QM9 and Drugs, to assess the robustness and effectiveness of our technique. Our results demonstrate that the watermarked molecules maintain statistical parity in 9 out of 10 performance metrics compared to the original. Moreover, they exhibit a 100% detection rate and a 99% extraction rate in a 2D decoded pipeline, while also showing robustness against post-editing attacks.
- Abstract(参考訳): 生成人工知能の分野では、知的財産を保護し、コンテンツの信頼性を維持するために、堅牢な透かし技術を統合することが不可欠である。
伝統的に、透かし技術は主に画像やオーディオなどのリッチな情報メディアのために開発されてきた。
しかし、これらの手法はグラフベースのデータ、特に分子グラフに適切に適応していない。
潜在3Dグラフ拡散(LDM-3DG)は、分子グラフ生成分野における上述のアプローチである。
このモデルは分子構造の複雑さを効果的に管理し、重要な対称性と位相的特徴を保存する。
我々は、この洗練された新技術を保護するために、パフォーマンス損失のない透かし技術であるガウスシェーディングを潜伏グラフ拡散領域に適用する。
我々の適応は、重複とパディングによる透かし拡散過程を単純化し、様々なメッセージタイプに適応し、適している。
本手法のロバスト性と有効性を評価するために, LDM-3DG モデルを用いて, 公開されているデータセット QM9 と薬品についていくつかの実験を行った。
その結果, 透かしを施した分子は, 性能指標10点中9点において, 元の値と比較して統計的に同値であることがわかった。
さらに、2Dデコードされたパイプラインでは100%検出率と99%抽出率を示し、また、後処理攻撃に対する堅牢性を示している。
関連論文リスト
- Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models [10.726987194250116]
拡散モデル出力にロバストで見えない透かしを埋め込む新しい透かし技術であるShallow Diffuseを導入する。
我々の理論的および経験的分析により,浅度拡散はデータ生成の一貫性と透かしの検出可能性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-10-28T14:51:04Z) - An Efficient Watermarking Method for Latent Diffusion Models via Low-Rank Adaptation [21.058231817498115]
低ランク適応(LoRA)に基づく潜在拡散モデル(LDM)の効率的な透かし手法を提案する。
提案手法は,高速な透かし埋め込みを保証し,透かしの非常に低ビット誤り率,生成画像の品質,検証のためのゼロ偽陰率(FNR)を維持できることを示す。
論文 参考訳(メタデータ) (2024-10-26T15:23:49Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping [20.7584503748821]
SDS (Score Distillation Sampling) はテキストから3D生成の一般的な技術として登場し、テキストから2Dのガイダンスからビュー依存情報を蒸留することで3Dコンテンツ作成を可能にする。
我々は、SDSの徹底的な解析を行い、その定式化を洗練し、中心となる設計はレンダリングされた画像の分布をモデル化することである。
本稿では,分散に基づく生成の劣化事例として,画像の描画を考慮し,分散モデリングプロセスの迅速化を図る,変分分布マッピング (VDM) という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-08T14:04:48Z) - Rethinking Score Distillation as a Bridge Between Image Distributions [97.27476302077545]
提案手法は, 劣化した画像(ソース)を自然画像分布(ターゲット)に転送することを目的としている。
本手法は,複数の領域にまたがって容易に適用可能であり,特殊な手法の性能のマッチングや評価を行うことができる。
テキストから2D、テキストベースのNeRF最適化、絵画を実画像に変換すること、光学錯視生成、および3Dスケッチから実画像に変換することにおいて、その実用性を実証する。
論文 参考訳(メタデータ) (2024-06-13T17:59:58Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARKは、コントラスト学習による堅牢性を高める、第一級の透かし技術である。
本評価の結果,JIGMARKは既存の透かし法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:31:41Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
グラフニューラルネットワーク(GNN)は、さまざまな分野でますます普及している。
個人データの不正利用に関する懸念が高まっている。
近年の研究では、このような誤用から画像データを保護する効果的な方法として、知覚不能な毒殺攻撃が報告されている。
本稿では,グラフデータの不正使用に対する保護のためにGraphCloakを導入する。
論文 参考訳(メタデータ) (2023-10-11T00:50:55Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
本研究では、これらの問題に対処するために、明示的に合成されたマルチビュー画像を活用する新しい戦略を提案する。
我々のアプローチは、高画質画像を生成するために、LCDによって強化されたイメージ・ツー・イメージ・パイプラインを活用することである。
組込み判別器では、合成したマルチビュー画像は実データと見なされ、最適化された3Dモデルのレンダリングは偽データとして機能する。
論文 参考訳(メタデータ) (2023-08-22T14:39:17Z) - Intellectual Property Protection of Diffusion Models via the Watermark
Diffusion Process [22.38407658885059]
本稿では,タスク生成時に透かしを印字せずに拡散モデルに新しい透かし手法であるWDMを紹介する。
タスク生成のための標準的な拡散プロセスと並行して、透かしを埋め込むための透かし拡散プロセス(WDP)を同時に学習するモデルを訓練する。
論文 参考訳(メタデータ) (2023-06-06T06:31:07Z) - Scalable Surface Water Mapping up to Fine-scale using Geometric Features
of Water from Topographic Airborne LiDAR Data [0.0]
可変反射特性ではなく, 水の幾何学的特性に着目した一意な手法を提案する。
この自然法則を接続性とともに活用することにより,小水域を精度良く同定することができる。
論文 参考訳(メタデータ) (2023-01-16T19:04:23Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。