論文の概要: Fed-pilot: Optimizing LoRA Allocation for Efficient Federated Fine-Tuning with Heterogeneous Clients
- arxiv url: http://arxiv.org/abs/2410.10200v2
- Date: Fri, 20 Jun 2025 20:43:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.244175
- Title: Fed-pilot: Optimizing LoRA Allocation for Efficient Federated Fine-Tuning with Heterogeneous Clients
- Title(参考訳): Fed-pilot:不均一クライアントによる効率的なフェデレート調整のためのLoRA割当最適化
- Authors: Zikai Zhang, Rui Hu, Ping Liu, Jiahao Xu,
- Abstract要約: メモリ効率の高いフェデレーションファインチューニングフレームワークであるFed-pilotを提案する。
メモリ制約のあるクライアントは、LoRAモジュールのサブセットのみをローカルにトレーニングすることで、ローランド適応(LoRA)ベースの微調整に参加することができる。
我々の知る限りでは、メモリ制約最適化を統合したFMのファインチューニングに関する最初の研究である。
- 参考スコア(独自算出の注目度): 11.102441622530181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning enables the fine-tuning of foundation models (FMs) across distributed clients for specific tasks; however, its scalability is limited by the heterogeneity of client memory capacities. In this work, we propose Fed-pilot, a memory-efficient federated fine-tuning framework. It enables memory-constrained clients to participate in Low-Rank Adaptation (LoRA)-based fine-tuning by training only a subset of LoRA modules locally. Fed-pilot identifies the optimal selection of trainable LoRA modules as a knapsack optimization problem, maximizing model performance under memory constraints for each client. To mitigate inconsistencies arising from heterogeneous module allocations and Non-IID data, Fed-pilot employs a novel aggregation rule that dynamically compensates for under-updated layers. Extensive experiments on five diverse datasets across various heterogeneous data settings demonstrate Fed-pilot's effectiveness and efficiency compared to state-of-the-art methods. To the best of our knowledge, this is the first study on federated fine-tuning of FMs that integrates memory-constrained optimization. The code will be publicly available.
- Abstract(参考訳): フェデレートラーニング(Federated Learning)は、特定のタスクのための分散クライアント間のファンデーションモデル(FM)の微調整を可能にするが、そのスケーラビリティはクライアントメモリ容量の不均一性によって制限される。
本稿では,メモリ効率の高いフェデレーションファインチューニングフレームワークであるFed-pilotを提案する。
メモリ制約のあるクライアントは、LoRAモジュールのサブセットのみをローカルにトレーニングすることで、ローランド適応(LoRA)ベースの微調整に参加することができる。
Fed-pilotは、トレーニング可能なLoRAモジュールの最適選択をknapsack最適化問題として特定し、各クライアントのメモリ制約下でのモデルパフォーマンスを最大化する。
不均一なモジュール割り当てと非IIDデータから生じる不整合を緩和するため、Fed-pilotは非更新層に対して動的に補償する新しいアグリゲーションルールを採用している。
さまざまな異種データ設定にまたがる5つの多様なデータセットに関する大規模な実験は、最先端の手法と比較して、Fed-pilotの有効性と効率を実証している。
我々の知る限りでは、メモリ制約最適化を統合したFMのファインチューニングに関する最初の研究である。
コードは公開されます。
関連論文リスト
- Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation [47.82423317739088]
本稿では, パーソナライズされたモデルパラメータアグリゲーションを用いた三要素化低ランク適応手法である通信効率のフェデレーションLoRA適応(CE-LoRA)を提案する。
各種LLMおよびVLM微調整タスクの実験により、CE-LoRAは通信オーバーヘッドを著しく低減するだけでなく、独立で同一の分散データ条件下での性能も向上することが示された。
論文 参考訳(メタデータ) (2025-03-31T09:18:42Z) - Resource-Efficient Federated Fine-Tuning Large Language Models for Heterogeneous Data [16.844142562389443]
フェデレートラーニング(Federated Learning)、すなわちフェデレーションラーニング(FedLLM)を通じて、さまざまな下流アプリケーションにLLMをプライバシ保護方式で適応させるための微調整大型言語モデル(LLM)が提案されている。
資源制約装置の微調整コストを低減するため、FedLLMにローランク適応(LoRA)を統合することにより、モデルパラメータの小さなサブセットのみを微調整することを提案した。
本稿では、これらの課題に対処するため、階層的なFedLoRAフレームワークであるHierFedLoRAを提案する。
論文 参考訳(メタデータ) (2025-03-27T07:05:22Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
大規模言語モデル(LLM)は、微調整を必要とせず、強力な少数ショット適応性を示す。
現在のVisual Foundation Models (VFM) は十分なチューニングデータを持つ明示的な微調整を必要とする。
そこで我々は, メタ学習目的の多様なLoRAからメタLoRAを蒸留するフレームワークであるLoRA Recycleを提案する。
論文 参考訳(メタデータ) (2024-12-03T07:25:30Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
ファンデーションモデル(FM)は、タスク固有の微調整によって、多様なタスクにまたがる強力なパフォーマンスを実現する。
低ランク適応 (LoRA) のようなローランク適応 (LoRA) 手法は、少ないパラメータをチューニングするための低ランク行列を導入することで、このコストを削減する。
LoRA-FAIRは計算と通信の効率を維持し、最先端の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2024-11-22T14:19:01Z) - Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models [21.953204885495573]
本稿ではLow-Rank Adaptation (LoRA)を用いたFLフレームワークの収束と性能保証を批判的に分析する。
直接重み付けはLoRAベースの戦略よりも優れており、微調整モデルでは優れた性能が得られることを示す。
以上の結果から,GaLoreはFlexLoRAやFFA-LoRAといったフェデレートされたLoRA手法よりも,テキストや画像のモダリティにおいて優れた代替手段であることが示唆された。
論文 参考訳(メタデータ) (2024-10-30T15:23:44Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) は基礎モデルの効率的な微調整技術として人気がある。
凍結重量行列に残留誤差項を追加するFederated Exact LoRA(FedEx-LoRA)を提案する。
提案手法は,LoRAの効率を保ちながら,計算と通信のオーバーヘッドを最小限に抑えた正確な更新を実現する。
論文 参考訳(メタデータ) (2024-10-12T08:22:44Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
ヘテロジニアスLoRAアダプタ上でのファインチューニングを可能にするFLORAと呼ばれる新しい手法を提案する。
我々のアプローチはノイズフリーであり、ヘテロジニアスなLoRAアダプタをシームレスにサポートしています。
論文 参考訳(メタデータ) (2024-09-09T18:21:23Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model [48.33280660752336]
大規模言語モデル(LLM)は、適切なデータで微調整した後、多くのドメイン固有のタスクで素晴らしいパフォーマンスを示す。
多くのドメイン固有のデータは、プライベートに複数の所有者に分散される。
我々は,フェデレート学習のための資源効率の高いLLM微調整手法であるFedBiOTを紹介する。
論文 参考訳(メタデータ) (2024-06-25T16:45:47Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
ローランク適応(ローランク適応、LoRA)は、事前訓練された言語モデルにおける最も一般的なタスク固有パラメータ効率細調整(PEFT)手法の1つである。
本稿では,これらの課題を緩和するために,LoRAの効率的かつ効果的なフェデレートフリーズA LoRA(FFA-LoRA)を提案する。
論文 参考訳(メタデータ) (2024-03-18T23:20:08Z) - FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the
Power of Heterogeneous Clients [50.13097183691517]
実世界のフェデレーションシナリオでは、様々な計算と通信資源を持つ多種多様なクライアントが存在することが多い。
本稿では,新しいフェデレーションチューニングアルゴリズムであるFedRAを提案する。
各通信ラウンドにおいて、FedRAはランダムにアロケーション行列を生成する。
アダプタを用いてアロケーション行列とファインチューンに基づいて、元のモデルから少数のレイヤを再編成する。
論文 参考訳(メタデータ) (2023-11-19T04:43:16Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。