論文の概要: Measurability in the Fundamental Theorem of Statistical Learning
- arxiv url: http://arxiv.org/abs/2410.10243v1
- Date: Mon, 14 Oct 2024 08:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 02:14:55.166710
- Title: Measurability in the Fundamental Theorem of Statistical Learning
- Title(参考訳): 統計的学習の基本理論における測定可能性
- Authors: Lothar Sebastian Krapp, Laura Wirth,
- Abstract要約: 統計的学習の基本定理は、仮説空間がPAC学習可能であることと、そのVC次元が有限であることは同値である。
本稿では、実数 O-極小展開上で定義された仮説空間のPAC学習可能性について十分な条件を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Fundamental Theorem of Statistical Learning states that a hypothesis space is PAC learnable if and only if its VC dimension is finite. For the agnostic model of PAC learning, the literature so far presents proofs of this theorem that often tacitly impose several measurability assumptions on the involved sets and functions. We scrutinize these proofs from a measure-theoretic perspective in order to extract the assumptions needed for a rigorous argument. This leads to a sound statement as well as a detailed and self-contained proof of the Fundamental Theorem of Statistical Learning in the agnostic setting, showcasing the minimal measurability requirements needed. We then discuss applications in Model Theory, considering NIP and o-minimal structures. Our main theorem presents sufficient conditions for the PAC learnability of hypothesis spaces defined over o-minimal expansions of the reals.
- Abstract(参考訳): 統計的学習の基本定理は、仮説空間がPAC学習可能であることと、そのVC次元が有限であることは同値である。
PAC学習の非依存モデルについて、これまでの文献では、この定理の証明を示しており、しばしば関連する集合や函数に対していくつかの可測性仮定を暗黙に課している。
我々は、厳密な議論に必要な仮定を抽出するために、これらの証明を測度理論の観点から精査する。
このことは、音のステートメントや、統計学習の基本理論の詳細な自己完結した証明につながり、必要最小限の可測性要件を示す。
次に、NIPおよびo-ミニマル構造を考慮したモデル理論の応用について論じる。
我々の主定理は、実数 O-極小展開上で定義される仮説空間のPAC学習可能性に関する十分条件を示す。
関連論文リスト
- Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion [63.68647582680998]
I-FKGC(inductive few-shot knowledge graph completion)と呼ばれる課題に焦点をあてる。
帰納的推論(inductive reasoning)の概念に着想を得て,I-FKGCを帰納的推論問題とした。
本稿では,仮説の連成分布をモデル化したニューラルプロセスに基づく仮説抽出器を提案する。
第2のモジュールでは、この仮説に基づいて、クエリセットのトリプルが抽出された仮説と一致するかどうかをテストするグラフアテンションベースの予測器を提案する。
論文 参考訳(メタデータ) (2024-08-03T13:37:40Z) - Computable learning of natural hypothesis classes [0.0]
最近、PACが学習可能であるが、計算可能でない仮説クラスが与えられた。
計算可能性理論のon-a-cone 機械を用いて、仮説クラスが計算可能リスト化可能であるような軽微な仮定の下では、学習可能な自然仮説クラスは計算可能リスト化可能であることを証明する。
論文 参考訳(メタデータ) (2024-07-23T17:26:38Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
証明の各ステップに先立って,非公式な思考を生成するために,言語モデルをトレーニングするフレームワークであるLean-STaRを紹介します。
Lean-STaRは、Lean定理証明環境内のminiF2F-testベンチマークで最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T01:43:07Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Simplicial quantum contextuality [0.0]
ホモトピー理論において顕著な役割を果たす位相空間のモデルであるsimplicial setに基づく文脈性のための新しい枠組みを導入する。
提案手法は,測定シナリオを,測定結果の空間(集合ではなく)に拡張する。
ベルシナリオにおける非文脈性を特徴づけるためのファインの定理の新しい証明をトポロジカルに着想を得たものである。
論文 参考訳(メタデータ) (2022-04-13T22:03:28Z) - Learning Topic Models: Identifiability and Finite-Sample Analysis [6.181048261489101]
本稿では,特定の統合可能性に基づく潜在トピックの最大確率推定器(MLE)を提案する。
シミュレーションと実データの両方について実証的研究を行った。
論文 参考訳(メタデータ) (2021-10-08T16:35:42Z) - A Topological Perspective on Causal Inference [10.965065178451104]
仮定のない因果推論は、構造因果モデルの単なる集合においてのみ可能であることを示す。
以上の結果から,有効な因果推論を行うのに十分な帰納的仮定は,原理上は統計的に検証できないことが示唆された。
我々のトポロジカルアプローチのさらなる利点は、無限に多くの変数を持つSCMに容易に対応できることである。
論文 参考訳(メタデータ) (2021-07-18T23:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。