論文の概要: Graph Classification Gaussian Processes via Hodgelet Spectral Features
- arxiv url: http://arxiv.org/abs/2410.10546v1
- Date: Mon, 14 Oct 2024 14:26:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 20:55:06.311275
- Title: Graph Classification Gaussian Processes via Hodgelet Spectral Features
- Title(参考訳): ホッジレットスペクトル特徴によるガウス過程のグラフ分類
- Authors: Mathieu Alain, So Takao, Xiaowen Dong, Bastian Rieck, Emmanuel Noutahi,
- Abstract要約: 本稿では,グラフの分類のためのプロセスベース分類アルゴリズムを提案する。
私たちはHodge分解を利用してモデルの柔軟性を高めます。
- 参考スコア(独自算出の注目度): 18.356495042963267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of classifying graphs is ubiquitous in machine learning. While it is standard to apply graph neural networks for such tasks, Gaussian processes can also be used, by transforming graph features into the spectral domain, and using the resulting spectral features as input points. However, this approach only takes into account features on vertices, whereas some graph data also support features on edges. In this work, we present a Gaussian process-based classification algorithm that can utilise vertex and/or edges features to help classify graphs. Furthermore, we take advantage of the Hodge decomposition of vertex and edge features to increase the flexibility of the model, which can be beneficial on some tasks.
- Abstract(参考訳): グラフを分類する問題は、機械学習においてユビキタスである。
このようなタスクにグラフニューラルネットワークを適用するのが一般的だが、グラフ特徴をスペクトル領域に変換し、その結果のスペクトル特徴を入力ポイントとして使用することにより、ガウス過程も利用できる。
しかし、このアプローチは頂点上の機能のみを考慮しており、グラフデータの中にはエッジ上の機能もサポートしているものもある。
本研究では,頂点およびエッジ機能を利用してグラフを分類するガウス過程に基づく分類アルゴリズムを提案する。
さらに,頂点とエッジのHodge分解を利用してモデルの柔軟性を向上させる。
関連論文リスト
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Graph Classification Gaussian Processes via Spectral Features [7.474662887810221]
グラフ分類は、その構造とノード属性に基づいてグラフを分類することを目的としている。
本研究では,スペクトル特徴を導出するグラフ信号処理ツールを用いて,この課題に取り組むことを提案する。
このような単純なアプローチであっても、学習されたパラメータがなくても、強力なニューラルネットワークやグラフカーネルのベースラインと比較して、競争力のあるパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2023-06-06T15:31:05Z) - Transductive Kernels for Gaussian Processes on Graphs [7.542220697870243]
半教師付き学習のためのノード特徴データ付きグラフ用の新しいカーネルを提案する。
カーネルは、グラフと特徴データを2つの空間として扱うことにより、正規化フレームワークから派生する。
グラフ上のカーネルベースのモデルがどれだけの頻度で設計されているかを示す。
論文 参考訳(メタデータ) (2022-11-28T14:00:50Z) - Learning Heuristics for the Maximum Clique Enumeration Problem Using Low
Dimensional Representations [0.0]
本稿では,最大列挙問題の傾きを低減するために,入力グラフのプルーニング処理に学習フレームワークを用いる。
本手法の性能評価において,異なる頂点表現を用いることが果たす役割について検討する。
分類過程において局所的なグラフ特徴を用いることで,特徴の除去過程と組み合わせることで,より正確な結果が得られることが観察された。
論文 参考訳(メタデータ) (2022-10-30T22:04:32Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
本稿では,空間領域とスペクトル領域の両方にメッセージパッシングを適用するSpectral Graph Networkを紹介する。
その結果,spectrum gnは効率のよいトレーニングを促進し,より多くのパラメータを持つにもかかわらず,少ないトレーニングイテレーションで高いパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-31T21:33:17Z) - Mat\'ern Gaussian Processes on Graphs [67.13902825728718]
我々は、マタン・ガウス過程の偏微分方程式のキャラクタリゼーションを利用して、そのアナログを無向グラフに対して研究する。
得られたガウス過程がユークリッドアナログやユークリッドアナログの様々な魅力的な性質を継承することを示す。
これにより、グラフのMat'ern Gaussianプロセスがミニバッチや非共役設定に使用できる。
論文 参考訳(メタデータ) (2020-10-29T13:08:07Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
カーネル重み付けの観点からノード集約を再解釈する。
本稿では,アグリゲーション方式における特徴類似性を考慮したフレームワークを提案する。
特徴空間における特徴類似性をエンコードするために,元の隣り合うカーネルと学習可能なカーネルの合成として特徴集約を提案する。
論文 参考訳(メタデータ) (2020-05-16T04:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。