論文の概要: Self-adaptive Multimodal Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2410.11321v1
- Date: Tue, 15 Oct 2024 06:39:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:45.790347
- Title: Self-adaptive Multimodal Retrieval-Augmented Generation
- Title(参考訳): 自己適応型マルチモーダル検索型生成
- Authors: Wenjia Zhai,
- Abstract要約: 我々は,自己適応型マルチモーダル検索型生成(SAM-RAG)という新しい手法を提案する。
SAM-RAGは、必要なときに画像キャプションを含む入力クエリに基づいて関連文書を動的にフィルタリングするだけでなく、検索した文書と出力の両方の品質を検証する。
その結果,SAM-RAGは検索精度と応答生成の両面で既存の最先端手法を上回ることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Traditional Retrieval-Augmented Generation (RAG) methods are limited by their reliance on a fixed number of retrieved documents, often resulting in incomplete or noisy information that undermines task performance. Although recent adaptive approaches alleviated these problems, their application in intricate and real-world multimodal tasks remains limited. To address these, we propose a new approach called Self-adaptive Multimodal Retrieval-Augmented Generation (SAM-RAG), tailored specifically for multimodal contexts. SAM-RAG not only dynamically filters relevant documents based on the input query, including image captions when needed, but also verifies the quality of both the retrieved documents and the output. Extensive experimental results show that SAM-RAG surpasses existing state-of-the-art methods in both retrieval accuracy and response generation. By further ablation experiments and effectiveness analysis, SAM-RAG maintains high recall quality while improving overall task performance in multimodal RAG task. Our codes are available at https://github.com/SAM-RAG/SAM_RAG.
- Abstract(参考訳): 従来のRetrieval-Augmented Generation (RAG) 法は、取得した文書の固定数に依存して制限されており、多くの場合、タスクのパフォーマンスを損なう不完全またはノイズの多い情報をもたらす。
最近の適応的アプローチはこれらの問題を緩和したものの、複雑な実世界のマルチモーダルタスクへの応用は限定的のままである。
そこで本稿では, 自己適応型マルチモーダル検索・拡張生成(SAM-RAG)という手法を提案する。
SAM-RAGは、必要なときに画像キャプションを含む入力クエリに基づいて関連文書を動的にフィルタリングするだけでなく、検索した文書と出力の両方の品質を検証する。
その結果,SAM-RAGは検索精度と応答生成の両面で既存の最先端手法を上回ることがわかった。
SAM-RAGは、さらなるアブレーション実験と有効性解析により、マルチモーダルRAGタスクにおける全体的なタスク性能を改善しつつ、高いリコール品質を維持している。
私たちのコードはhttps://github.com/SAM-RAG/SAM_RAG.comで公開されています。
関連論文リスト
- REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
本稿では,リアルタイム検索に不可欠な4つの重要な特性に対処する自動生成ベンチマークREAL-MM-RAGを紹介する。
本稿では,キーワードマッチング以外のモデルのセマンティック理解を評価するために,クエリリフレッシングに基づく多言語レベルのスキームを提案する。
我々のベンチマークでは、特にテーブル重ドキュメントの扱いや、クエリ・リフレージングに対する堅牢性において、重要なモデルの弱点が明らかになっている。
論文 参考訳(メタデータ) (2025-02-17T22:10:47Z) - MRAMG-Bench: A BeyondText Benchmark for Multimodal Retrieval-Augmented Multimodal Generation [19.745059794932807]
本稿では,MRAMG(Multimodal Retrieval-Augmented Multimodal Generation)タスクを紹介する。
このタスクは、コーパス内のマルチモーダルデータを完全に活用して、テキストと画像の両方を組み合わせた回答を生成することを目的としている。
MRAMG-Benchは,統計およびLLMに基づくメトリクスの包括的スイートである。
論文 参考訳(メタデータ) (2025-02-06T16:07:24Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
大規模言語モデル(LLM)は、様々な自然言語処理タスクに不可欠なツールであるが、時代遅れや誤った情報の生成に悩まされることが多い。
Retrieval-Augmented Generation (RAG)は、外部のリアルタイム情報検索をLLM応答に組み込むことでこの問題に対処する。
この問題に対処するため,マルチエージェントフィルタ検索検索生成(MAIN-RAG)を提案する。
MAIN-RAGはトレーニング不要なRAGフレームワークで、複数のLCMエージェントを利用して検索した文書のフィルタリングとスコア付けを行う。
論文 参考訳(メタデータ) (2024-12-31T08:07:26Z) - Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
近年の研究では、検索-拡張生成フレームワークと知識グラフを組み合わせることで、大規模言語モデルの推論能力を強力に向上することが示されている。
我々は多目的帯域拡張RAGフレームワークを導入し、多様な機能を持つ複数の検索手法をサポートする。
本手法は,定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-10T15:56:03Z) - Unified Active Retrieval for Retrieval Augmented Generation [69.63003043712696]
Retrieval-Augmented Generation (RAG)では、検索は必ずしも役に立たない。
既存のアクティブ検索手法は2つの課題に直面している。
彼らは通常、様々な種類の命令を扱うのに苦労する単一の基準に頼っている。
それらは特殊で高度に区別された手順に依存しており、それらを組み合わせることでRAGシステムはより複雑になる。
論文 参考訳(メタデータ) (2024-06-18T12:09:02Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。