論文の概要: RATE: Causal Explainability of Reward Models with Imperfect Counterfactuals
- arxiv url: http://arxiv.org/abs/2410.11348v3
- Date: Mon, 19 May 2025 22:33:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:51.446114
- Title: RATE: Causal Explainability of Reward Models with Imperfect Counterfactuals
- Title(参考訳): RATE:不完全な事実をもつリワードモデルの因果説明可能性
- Authors: David Reber, Sean Richardson, Todd Nief, Cristina Garbacea, Victor Veitch,
- Abstract要約: 属性に対する報酬モデルの感度を測定する有効な方法として,リライトに基づく属性処理推定器(RATE)を開発した。
RATEはLSMを使って応答を書き直し、因果効果を測定するのに使える不完全な反ファクトの例を生成する。
提案手法の有効性を確立し,有効推定器であることを実証的に示す。
- 参考スコア(独自算出の注目度): 11.121749884408331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reward models are widely used as proxies for human preferences when aligning or evaluating LLMs. However, reward models are black boxes, and it is often unclear what, exactly, they are actually rewarding. In this paper we develop Rewrite-based Attribute Treatment Estimator (RATE) as an effective method for measuring the sensitivity of a reward model to high-level attributes of responses, such as sentiment, helpfulness, or complexity. Importantly, RATE measures the causal effect of an attribute on the reward. RATE uses LLMs to rewrite responses to produce imperfect counterfactuals examples that can be used to measure causal effects. A key challenge is that these rewrites are imperfect in a manner that can induce substantial bias in the estimated sensitivity of the reward model to the attribute. The core idea of RATE is to adjust for this imperfect-rewrite effect by rewriting twice. We establish the validity of the RATE procedure and show empirically that it is an effective estimator.
- Abstract(参考訳): リワードモデルは、LLMの調整や評価において人間の好みのプロキシとして広く使われている。
しかし、報酬モデルはブラックボックスであり、実際に報酬を得ているのかははっきりしないことが多い。
本稿では,リライトに基づく属性処理推定器(RATE)を,感情や有用性,複雑性などの高レベルな応答特性に対する報酬モデルの感度を測定する効果的な方法として開発する。
重要なことは、RATEが報酬に対する属性の因果効果を測定することである。
RATEはLSMを使って応答を書き直し、因果効果を測定するのに使える不完全な反ファクトの例を生成する。
重要な課題は、これらの書き換えが属性に対する報酬モデルの推定感度のかなりのバイアスを引き起こすような方法で不完全なことである。
RATEの中核となる考え方は、この不完全な書き直し効果を2回書き直すことで調整することである。
提案手法の有効性を確立し,有効推定器であることを実証的に示す。
関連論文リスト
- R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
プロセス・リワード・モデル(Process Reward Models, PRM)は、各推論ステップを評価することによって、有望なソリューションとして登場した。
既存のPRMは評価スコアを直接出力し、学習効率と評価精度の両方を制限する。
推論駆動プロセスリワードモデリング(R-PRM)を提案する。
R-PRMは限られたアノテーションからシードデータを生成し、効果的にモデルの推論能力をブートストラップします。
論文 参考訳(メタデータ) (2025-03-27T09:23:08Z) - What Makes a Reward Model a Good Teacher? An Optimization Perspective [61.38643642719093]
報奨モデルによらず,報酬の分散が低い場合,RLHFの目的は平坦な景観に苦しむことが証明された。
さらに、ある言語モデルでうまく機能する報酬モデルが、低い報酬分散を誘発し、したがって、別の言語モデルに対して平坦な客観的景観をもたらすことを示す。
論文 参考訳(メタデータ) (2025-03-19T17:54:41Z) - REINFORCE Adversarial Attacks on Large Language Models: An Adaptive, Distributional, and Semantic Objective [57.57786477441956]
応答の個体群に対する適応的・意味的最適化問題を提案する。
我々の目標は、Llama3の攻撃成功率(ASR)を2倍にし、サーキットブレーカー防御でASRを2%から50%に向上させることである。
論文 参考訳(メタデータ) (2025-02-24T15:34:48Z) - Reward Models Identify Consistency, Not Causality [54.987590763737145]
最先端の報酬モデルでは、因果正しさよりも構造的な一貫性が優先される。
問題文の削除は報酬のスコアに最小限の影響を与える。
数値を変更するか、推論フローを乱すかは、RM出力に大きく影響する。
論文 参考訳(メタデータ) (2025-02-20T14:57:14Z) - Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment [30.605500809158986]
本稿では,因果推論を統合し,素因果関係を緩和する因果報酬モデリング手法を提案する。
提案手法は様々な種類のスプリアス相関を効果的に緩和し,LLMと人間の嗜好との整合性を高めた。
論文 参考訳(メタデータ) (2025-01-16T16:00:37Z) - R3HF: Reward Redistribution for Enhancing Reinforcement Learning from Human Feedback [25.27230140274847]
人間のフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせるためのパラダイムを提供する。
本稿では,より微細なトークンレベルの報酬配分を容易にするR3HFという新たな報酬分配手法を提案する。
論文 参考訳(メタデータ) (2024-11-13T02:45:21Z) - CREAM: Consistency Regularized Self-Rewarding Language Models [34.325289477993586]
自己回帰型大規模言語モデル (LLM) は, 優先データに対する人間のアノテーションを必要とせずに, LLM-as-a-Judge を用いてアライメント性能を向上させることに成功した。
しかし、報酬とランキングの正確性は保証されていないため、精度の高い報酬と高品質な選好データを保証するのに不可欠である。
本稿では,各イテレーション間の報酬の整合性を活用し,自己回帰訓練を規則化する一貫性正規化sElf-rewarding lAnguage Model(CREAM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T16:51:01Z) - Evaluating Robustness of Reward Models for Mathematical Reasoning [14.97819343313859]
本稿では,報酬モデルの信頼性評価のための新しい設計を提案し,これを検証するためにRewardMATHを構築した。
RewardMATHのスコアは、最適化されたポリシーの結果と強く相関し、効果的に報酬過大評価を推定する。
論文 参考訳(メタデータ) (2024-10-02T16:39:58Z) - Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
きめ細かいフィードバックは、画像の品質と迅速な調整におけるニュアンスドの区別を捉えます。
粗いフィードバックに対する優位性を示すことは、自動ではないことを示す。
きめ細かいフィードバックを抽出し活用する上で重要な課題を特定します。
論文 参考訳(メタデータ) (2024-06-24T17:19:34Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
本稿では,この脆弱性をアライメントプロセス中に不特定性に対処する新たな視点を提案する。
本稿では,報酬の相違の程度を定量化し,その有効性を実証する指標ReGapを紹介する。
ReMissは、報酬ミスの空間で敵のプロンプトを生成する自動レッドチームリングシステムである。
論文 参考訳(メタデータ) (2024-06-20T15:12:27Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
アノテーションを使わずにクエリ書き換えモデルをトレーニングするためのフレームワークを提案する。
公開されているリランカを活用することで、フィードバックはリライトの目的とよく一致します。
論文 参考訳(メタデータ) (2024-05-23T11:00:19Z) - Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models [85.96013373385057]
人間のフィードバックデータに基づいて訓練された報酬関数を持つ微調整テキスト・ツー・イメージモデルは、モデル行動と人間の意図との整合性を実証した。
しかし、そのような報酬モデルによる過度な最適化は、単にプロキシの目的として機能し、微調整されたモデルの性能を損なう可能性がある。
本研究では,テキストプロンプトの集合に対して推定された報酬モデル信頼度に基づいてアライメントを強化する手法であるTextNormを提案する。
論文 参考訳(メタデータ) (2024-04-02T11:40:38Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - A Baseline Analysis of Reward Models' Ability To Accurately Analyze
Foundation Models Under Distribution Shift [2.2310395620011945]
我々は、分配シフトによる報酬モデルの性能への影響を評価する。
OODプロンプトと応答による新しい校正パターンと精度低下を示す。
我々は、分類によく用いられるOOD検出手法を報酬モデル設定に適用し、これらの分布シフトを検出する。
論文 参考訳(メタデータ) (2023-11-21T18:41:26Z) - Fine-Grained Human Feedback Gives Better Rewards for Language Model
Training [108.25635150124539]
言語モデル(LM)は、しばしば偽、有毒、無関係な出力を生成するなど、望ましくないテキスト生成の振る舞いを示す。
本研究では,2つの点において微細な報酬関数から学習と学習を可能にするフレームワークであるFine-Grained RLHFを紹介する。
論文 参考訳(メタデータ) (2023-06-02T17:11:37Z) - Reward Collapse in Aligning Large Language Models [64.98482888193267]
著者らは,ランキングに基づくアプローチがテキストの報酬分布をもたらす経験的観察である「テクストトレワード崩壊現象」について検討した。
実験結果から,提案手法により,報酬モデルのトレーニングにおいて,報酬の崩壊が著しく軽減されることが示唆された。
論文 参考訳(メタデータ) (2023-05-28T02:12:00Z) - Scaling Laws for Reward Model Overoptimization [19.93331579503503]
我々は,ゴールド報酬モデルが,強化学習とベスト・オブ・n$サンプリングのどちらを用いて,プロキシ報酬モデルに対して最適化する際にどのようにスコアが変化するかを検討する。
また、報酬モデルデータセットのサイズ、報酬モデルと政策パラメータの数、および強化学習における報酬に付加されるKLペナルティの係数との関係について検討した。
論文 参考訳(メタデータ) (2022-10-19T17:56:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。