LoSAM: Local Search in Additive Noise Models with Unmeasured Confounders, a Top-Down Global Discovery Approach
- URL: http://arxiv.org/abs/2410.11759v3
- Date: Sun, 10 Nov 2024 19:03:35 GMT
- Title: LoSAM: Local Search in Additive Noise Models with Unmeasured Confounders, a Top-Down Global Discovery Approach
- Authors: Sujai Hiremath, Promit Ghosal, Kyra Gan,
- Abstract summary: We introduce local search in additive noise model (LoSAM)
LoSAM generalizes an existing nonlinear method that leverages local causal substructures to the general additive noise setting.
We show that LoSAM achieves runtime, and improves runtime and efficiency by exploiting new substructures.
- Score: 2.4305626489408465
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We address the challenge of causal discovery in structural equation models with additive noise without imposing additional assumptions on the underlying data-generating process. We introduce local search in additive noise model (LoSAM), which generalizes an existing nonlinear method that leverages local causal substructures to the general additive noise setting, allowing for both linear and nonlinear causal mechanisms. We show that LoSAM achieves polynomial runtime, and improves runtime and efficiency by exploiting new substructures to minimize the conditioning set at each step. Further, we introduce a variant of LoSAM, LoSAM-UC, that is robust to unmeasured confounding among roots, a property that is often not satisfied by functional-causal-model-based methods. We numerically demonstrate the utility of LoSAM, showing that it outperforms existing benchmarks.
Related papers
- Spatial Reasoning with Denoising Models [49.83744014336816]
We introduce a framework to perform reasoning over sets of continuous variables via denoising generative models.
We demonstrate for the first time, that order of generation can successfully be predicted by the denoising network itself.
arXiv Detail & Related papers (2025-02-28T14:08:30Z) - Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
We present an extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the recurrent adaptive lasso to identify PDEs automatically.
We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs under various noise levels and sample sizes.
Our results show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data, outperforming the sequential threshold ridge regression method in most cases.
arXiv Detail & Related papers (2024-04-25T09:23:03Z) - SAM-DiffSR: Structure-Modulated Diffusion Model for Image
Super-Resolution [49.205865715776106]
We propose the SAM-DiffSR model, which can utilize the fine-grained structure information from SAM in the process of sampling noise to improve the image quality without additional computational cost during inference.
Experimental results demonstrate the effectiveness of our proposed method, showcasing superior performance in suppressing artifacts, and surpassing existing diffusion-based methods by 0.74 dB at the maximum in terms of PSNR on DIV2K dataset.
arXiv Detail & Related papers (2024-02-27T01:57:02Z) - Effective Causal Discovery under Identifiable Heteroscedastic Noise Model [45.98718860540588]
Causal DAG learning has recently achieved promising performance in terms of both accuracy and efficiency.
We propose a novel formulation for DAG learning that accounts for the variation in noise variance across variables and observations.
We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties.
arXiv Detail & Related papers (2023-12-20T08:51:58Z) - Order-based Structure Learning with Normalizing Flows [7.972479571606131]
Estimating causal structure of observational data is a challenging search problem that scales super-exponentially with graph size.
Existing methods use continuous relaxations to make this problem computationally tractable but often restrict the data-generating process to additive noise models (ANMs)
We present Order-based Structure Learning with Normalizing Flows (OSLow), a framework that relaxes these assumptions using autoregressive normalizing flows.
arXiv Detail & Related papers (2023-08-14T22:17:33Z) - Causal Discovery with Score Matching on Additive Models with Arbitrary
Noise [37.13308785728276]
Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure structure identifiability.
In this paper we show the shortcomings of inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity of the noise terms.
We propose a novel method for inferring the topological ordering of the variables in the causal graph, from data generated according to an additive non-linear model with a generic noise distribution.
This leads to NoGAM, a causal discovery algorithm with a minimal set of assumptions and state of the art performance, experimentally benchmarked on synthetic data.
arXiv Detail & Related papers (2023-04-06T17:50:46Z) - Neural Abstractions [72.42530499990028]
We present a novel method for the safety verification of nonlinear dynamical models that uses neural networks to represent abstractions of their dynamics.
We demonstrate that our approach performs comparably to the mature tool Flow* on existing benchmark nonlinear models.
arXiv Detail & Related papers (2023-01-27T12:38:09Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Online Incremental Non-Gaussian Inference for SLAM Using Normalizing
Flows [34.297172076718354]
NF-iSAM exploits the expressive power of neural networks to model normalizing flows that can accurately approximate the joint posterior of highly nonlinear and non-Gaussian factor graphs.
We demonstrate the performance of NF-iSAM and compare it against state-of-the-art algorithms such as iSAM2 (Gaussian) and mm-iSAM (non-Gaussian) in synthetic and real range-only SLAM datasets.
arXiv Detail & Related papers (2021-10-02T21:07:05Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix
Recovery [8.581512812219737]
We propose a new framework for low-rank matrix recovery from observations corrupted with noise and outliers.
Inspired by the square root Lasso, this new formulation does not require prior knowledge of the noise level.
We show that a single, universal choice of the regularization parameter suffices to achieve reconstruction error proportional to the (a priori unknown) noise level.
arXiv Detail & Related papers (2021-06-17T02:28:11Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Data-driven learning of robust nonlocal physics from high-fidelity
synthetic data [3.9181541460605116]
Key challenge to nonlocal models is the analytical complexity of deriving them from first principles, and frequently their use is justified a posteriori.
In this work we extract nonlocal models from data, circumventing these challenges and providing data-driven justification for the resulting model form.
arXiv Detail & Related papers (2020-05-17T22:53:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.