論文の概要: ECGN: A Cluster-Aware Approach to Graph Neural Networks for Imbalanced Classification
- arxiv url: http://arxiv.org/abs/2410.11765v1
- Date: Tue, 15 Oct 2024 16:39:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:27.194717
- Title: ECGN: A Cluster-Aware Approach to Graph Neural Networks for Imbalanced Classification
- Title(参考訳): ECGN:不均衡分類のためのグラフニューラルネットワークに対するクラスタ対応アプローチ
- Authors: Bishal Thapaliya, Anh Nguyen, Yao Lu, Tian Xie, Igor Grudetskyi, Fudong Lin, Antonios Valkanas, Jingyu Liu, Deepayan Chakraborty, Bilel Fehri,
- Abstract要約: グラフ内のノードの分類は一般的な問題である。
既存のグラフニューラルネットワーク(GNN)は、両方の問題に一緒に対処していない。
拡張クラスタ対応グラフネットワーク(ECGN)を提案する。
- 参考スコア(独自算出の注目度): 9.516450051858891
- License:
- Abstract: Classifying nodes in a graph is a common problem. The ideal classifier must adapt to any imbalances in the class distribution. It must also use information in the clustering structure of real-world graphs. Existing Graph Neural Networks (GNNs) have not addressed both problems together. We propose the Enhanced Cluster-aware Graph Network (ECGN), a novel method that addresses these issues by integrating cluster-specific training with synthetic node generation. Unlike traditional GNNs that apply the same node update process for all nodes, ECGN learns different aggregations for different clusters. We also use the clusters to generate new minority-class nodes in a way that helps clarify the inter-class decision boundary. By combining cluster-aware embeddings with a global integration step, ECGN enhances the quality of the resulting node embeddings. Our method works with any underlying GNN and any cluster generation technique. Experimental results show that ECGN consistently outperforms its closest competitors by up to 11% on some widely studied benchmark datasets.
- Abstract(参考訳): グラフ内のノードの分類は一般的な問題である。
理想的な分類器は、クラス分布における任意の不均衡に適応しなければならない。
また、実世界のグラフのクラスタリング構造に情報を使う必要がある。
既存のグラフニューラルネットワーク(GNN)は、両方の問題に一緒に対処していない。
本稿では、クラスタ固有のトレーニングと合成ノード生成を統合することで、これらの問題に対処する新しい手法である強化クラスタ対応グラフネットワーク(ECGN)を提案する。
すべてのノードに同じノード更新プロセスを適用する従来のGNNとは異なり、ECGNは異なるクラスタに対して異なるアグリゲーションを学ぶ。
また、クラスタを使用して、クラス間の決定境界を明確にするために、新しいマイノリティクラスノードを生成します。
クラスタ対応の埋め込みとグローバルな統合ステップを組み合わせることで、ECGNは結果のノード埋め込みの品質を高める。
提案手法は,基盤となるGNNとクラスタ生成技術で機能する。
実験の結果、ECGNは広く研究されているベンチマークデータセットにおいて、最も近い競合相手を最大11%上回っていることがわかった。
関連論文リスト
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
ディープグラフクラスタリング法 (Dink-Net) は, 拡張と縮小という概念を用いて提案される。
ノードを識別することにより、拡張によって劣化しても、表現は自己教師された方法で学習される。
クラスタリング分布は、提案したクラスタ拡張損失とクラスタ縮小損失を最小化することにより最適化される。
ランナアップと比較して、Dink-Net 9.62%は1100万ノードと16億エッジを持つogbn-papers100MデータセットでNMIの改善を実現している。
論文 参考訳(メタデータ) (2023-05-28T15:33:24Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
本稿では,グラフレベルのクラスタリングの問題について検討する。
GLCC(Graph-Level Contrastive Clustering)というグラフレベルの一般的なクラスタリングフレームワークを提案する。
様々なよく知られたデータセットに対する実験は、競合するベースラインよりも提案したGLCCの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T11:08:10Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
グラフニューラルネットワーク(GNN)は多くのグラフ解析タスクにおいて最先端の結果を得た。
グラフクラスタリングのようなグラフ上の教師なしの問題は、GNNの進歩に対してより抵抗性があることが証明されている。
本稿では,クラスタリング品質のモジュラリティ尺度にインスパイアされた教師なしプール手法であるDeep Modularity Networks (DMoN)を紹介する。
論文 参考訳(メタデータ) (2020-06-30T15:30:49Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。