論文の概要: G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2410.11782v1
- Date: Tue, 15 Oct 2024 17:01:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:38.263557
- Title: G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks
- Title(参考訳): G-Designer: グラフニューラルネットワークによるマルチエージェント通信トポロジの構築
- Authors: Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang, Dawei Cheng,
- Abstract要約: G-Designerは,マルチエージェントデプロイメントのための適応的,効率的,堅牢なソリューションである。
G-Designerはタスク対応、カスタマイズされた通信トポロジを動的に設計する。
- 参考スコア(独自算出の注目度): 14.024988515071431
- License:
- Abstract: Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: \textit{Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution?} In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: \textbf{(1) high-performing}, achieving superior results on MMLU with accuracy at $84.50\%$ and on HumanEval with pass@1 at $89.90\%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33\%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3\%$ accuracy drop.
- Abstract(参考訳): 大規模言語モデル(LLM)に基づくエージェントの最近の進歩は、集団知能が個々のエージェントの能力を大幅に上回ることを示した。
さまざまな、ハイパフォーマンスな設計があるにもかかわらず、実践者は、特定のタスクに対して最も効果的なパイプラインを選択するときに、しばしば混乱に直面します。
このジレンマに反応して,マルチエージェントデプロイメントのための適応的で効率的で堅牢なソリューションであるG-Designerを導入し,タスク対応,カスタマイズされた通信トポロジを動的に設計する。
具体的には、G-Designerはマルチエージェントシステムをマルチエージェントネットワークとしてモデル化し、変分グラフオートエンコーダを利用して、ノード(エージェント)とタスク固有の仮想ノードの両方を符号化し、タスク適応的で高性能な通信トポロジをデコードする。
G-Designer の6つのベンチマークに関する大規模な実験では、G-Designer は次のとおりである: \textbf{(1) High-performing} MMLU において精度が 84.50\%$ で、HumanEval では 89.90\%$; \textbf{(2) task-adaptive} で 89.90\%$ で、通信プロトコルを設計し、タスクの難易度に合わせた通信プロトコルを設計し、トークン消費を 95.33\% で削減し、HumanEval では \textbf{(3) adversarially robust} で防御し、エージェントの敵攻撃を 0.3\%$ で防御する。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - Cut the Crap: An Economical Communication Pipeline for LLM-based Multi-Agent Systems [42.137278756052595]
$texttAgentPrune$は、メインストリームのマルチエージェントシステムにシームレスに統合できる。
textbf(I)は、既存のマルチエージェントフレームワークとシームレスに統合され、28.1%sim72.8%downarrow$トークンの削減を行う。
textbf(III)は2種類のエージェントベースの敵攻撃に対して3.5%sim10.8%uparrow$パフォーマンス向上で防御に成功した。
論文 参考訳(メタデータ) (2024-10-03T14:14:31Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
本稿では、モデル定式化のための生成人工知能(AI)エージェントを開発し、送信戦略の設計に専門家(MoE)の混合を適用した。
具体的には,大規模言語モデル(LLM)を活用して対話型モデリングパラダイムを構築する。
定式化問題の解法として, MoE-proximal Policy Optimization (PPO) アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-14T03:44:54Z) - Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with
Agent Team Optimization [59.39113350538332]
大規模言語モデル(LLM)エージェントは幅広いタスクで有効であることが示されており、複数のLLMエージェントを組み込むことで、その性能をさらに向上することができる。
既存のアプローチでは、固定されたエージェントセットを使用して静的アーキテクチャで相互に相互作用する。
我々は、推論やコード生成といった複雑なタスクにおいて、LLM-agentコラボレーションのためにDynamic LLM-Agent Network(textbfDyLAN$)というフレームワークを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - Exposing and Addressing Cross-Task Inconsistency in Unified
Vision-Language Models [80.23791222509644]
一貫性のないAIモデルは、人間のユーザーによって不安定で信頼できないと見なされている。
最先端のビジョン言語モデルは、タスク間の驚くほど高い一貫性のない振る舞いに悩まされている。
本稿では,大規模で自動生成されるクロスタスクコントラスト集合上で計算されたランク相関に基づく補助訓練目標を提案する。
論文 参考訳(メタデータ) (2023-03-28T16:57:12Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
目的は,ロボットの軌道とNOMA復号命令を協調的に最適化することで,マルチロボットシステムにおける全軌道の総和率を最大化することである。
ARIMAモデルとDouble Deep Q-network (D$3$QN)アルゴリズムを組み合わせたML方式を提案する。
論文 参考訳(メタデータ) (2022-05-03T17:14:47Z) - Accelerating Distributed Online Meta-Learning via Multi-Agent
Collaboration under Limited Communication [24.647993999787992]
マルチエージェントオンラインメタラーニングフレームワークを提案し、同等の2レベルのネストオンライン凸最適化(OCO)問題としてキャストする。
エージェントタスク平均的後悔の上限を特徴づけることで、マルチエージェントオンラインメタラーニングの性能は、限られた通信によるメタモデル更新において、エージェントが分散ネットワークレベルのOCOからどれだけの恩恵を受けられるかに大きく依存していることを示す。
我々は、最適なシングルエージェント後悔$O(sqrtT)$上の$sqrt1/N$の速度アップの要因が$の後に示す。
論文 参考訳(メタデータ) (2020-12-15T23:08:36Z) - Message-Aware Graph Attention Networks for Large-Scale Multi-Robot Path
Planning [12.988435681305281]
グラフニューラルネットワーク(GNN)は、分散マルチエージェントシステムにおける通信ポリシの学習能力から人気を集めている。
我々は、メッセージ依存の注意を喚起するための新しいメカニズムを取り入れることで、GNNをマルチエージェントパス計画に活用する以前の作業を拡張した。
我々のメッセージ対応グラフ注意neTwork(MAGAT)は、近隣のロボットから受信したメッセージにおける特徴の相対的重要性を決定するキークエリライクなメカニズムに基づいている。
論文 参考訳(メタデータ) (2020-11-26T10:37:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。