論文の概要: De-jargonizing Science for Journalists with GPT-4: A Pilot Study
- arxiv url: http://arxiv.org/abs/2410.12069v1
- Date: Tue, 15 Oct 2024 21:10:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:35.299642
- Title: De-jargonizing Science for Journalists with GPT-4: A Pilot Study
- Title(参考訳): GPT-4によるジャーナリストの非ジャーゴライズ科学 : パイロット研究
- Authors: Sachita Nishal, Eric Lee, Nicholas Diakopoulos,
- Abstract要約: このシステムは、ジャーゴンの識別においてかなり高いリコールを達成し、読者のジャーゴンの識別における相対的な違いを保存する。
この発見は、科学記者を支援するための生成AIの可能性を強調し、密集した文書を単純化するツールの開発について将来の研究を知らせる。
- 参考スコア(独自算出の注目度): 3.730699089967391
- License:
- Abstract: This study offers an initial evaluation of a human-in-the-loop system leveraging GPT-4 (a large language model or LLM), and Retrieval-Augmented Generation (RAG) to identify and define jargon terms in scientific abstracts, based on readers' self-reported knowledge. The system achieves fairly high recall in identifying jargon and preserves relative differences in readers' jargon identification, suggesting personalization as a feasible use-case for LLMs to support sense-making of complex information. Surprisingly, using only abstracts for context to generate definitions yields slightly more accurate and higher quality definitions than using RAG-based context from the fulltext of an article. The findings highlight the potential of generative AI for assisting science reporters, and can inform future work on developing tools to simplify dense documents.
- Abstract(参考訳): 本研究は, GPT-4(大規模言語モデル, LLM)とRetrieval-Augmented Generation(RAG)を併用したループ型システムの初期評価を行った。
このシステムはかなり高いリコールを達成し、読者のジャーゴン識別の相対的な差異を保ち、複雑な情報の感覚形成を支援するためのLCMにとって、パーソナライズが実現可能なユースケースとなることを示唆している。
意外なことに、定義を生成するためにコンテキストの抽象化だけを使用すると、記事の全文からRAGベースのコンテキストを使用するよりも、わずかに正確で高品質な定義が得られる。
この発見は、科学記者を支援するための生成AIの可能性を強調し、密集した文書を単純化するツールの開発について将来の研究を知らせる。
関連論文リスト
- SteLLA: A Structured Grading System Using LLMs with RAG [2.630522349105014]
本稿では,SteLLA (Structured Grading System Using LLMs with RAG) について述べる。
受験生の回答を含む実世界のデータセットを大学レベルの生物学コースから収集した。
実験により,本システムでは,人間の学級との相当な合意を達成でき,また,その問題で検討されたすべての知識点について,ブレークダウングレードとフィードバックを提供することができた。
論文 参考訳(メタデータ) (2025-01-15T19:24:48Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Do LLMs Dream of Ontologies? [13.776194387957617]
大規模モデル言語(LLM)は、様々な自然言語処理タスクにまたがる顕著な記憶を実証している。
本稿では,LLMが公開リソースから概念識別子(ID)-ラベル関連を正しく再現する範囲について検討する。
論文 参考訳(メタデータ) (2024-01-26T15:10:23Z) - Large Language Models for Scientific Information Extraction: An
Empirical Study for Virology [0.0]
談話に基づく学術コミュニケーションにおける構造的・意味的内容表現の利用を擁護する。
ウィキペディアのインフォボックスや構造化されたAmazon製品記述といったツールにヒントを得て、構造化された学術貢献要約を生成するための自動アプローチを開発しました。
以上の結果から,FLAN-T5のパラメータは現状のGPT-davinciよりも1000倍少ないことが示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:04:55Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Personalized Jargon Identification for Enhanced Interdisciplinary
Communication [22.999616448996303]
ジェルゴン同定の現在の方法は、主にコーパスレベルの親しみ度指標を使用する。
11人のコンピュータサイエンス研究者から10万以上の用語の親しみやすさアノテーションのデータセットを収集します。
個人,サブドメイン,ドメイン知識を表す特徴について検討し,個々のジャーゴンの親しみ度を予測する。
論文 参考訳(メタデータ) (2023-11-16T00:51:25Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - Large-Scale Text Analysis Using Generative Language Models: A Case Study
in Discovering Public Value Expressions in AI Patents [2.246222223318928]
本稿では,生成言語モデル(GPT-4)を用いて,大規模テキスト解析のためのラベルと論理式を生成する手法を提案する。
InnovationQ+に送信された高度なBooleanクエリを用いて、154,934件の特許文書からなるデータベースを収集する。
我々は、これらのAI特許文中の公開価値表現を識別し、ラベル付けするためのフレームワークを設計する。
論文 参考訳(メタデータ) (2023-05-17T17:18:26Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。