論文の概要: Context Matters: Leveraging Contextual Features for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2410.12672v1
- Date: Wed, 16 Oct 2024 15:36:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:38.401588
- Title: Context Matters: Leveraging Contextual Features for Time Series Forecasting
- Title(参考訳): コンテキストの問題: 時系列予測にコンテキスト機能を活用する
- Authors: Sameep Chattopadhyay, Pulkit Paliwal, Sai Shankar Narasimhan, Shubhankar Agarwal, Sandeep P. Chinchali,
- Abstract要約: 既存の予測モデルにマルチモーダルなコンテキスト情報を外科的に統合する新しいプラグイン・アンド・プレイ手法であるContextFormerを導入する。
ContextFormerは、カテゴリ、連続、時間変化、さらにはテキスト情報を含む、リッチなマルチモーダルコンテキストから予測固有の情報を効果的に蒸留する。
エネルギー、交通、環境、金融ドメインにまたがるさまざまな実世界のデータセットにおいて、SOTA予測モデルを最大30%上回ります。
- 参考スコア(独自算出の注目度): 2.9687381456164004
- License:
- Abstract: Time series forecasts are often influenced by exogenous contextual features in addition to their corresponding history. For example, in financial settings, it is hard to accurately predict a stock price without considering public sentiments and policy decisions in the form of news articles, tweets, etc. Though this is common knowledge, the current state-of-the-art (SOTA) forecasting models fail to incorporate such contextual information, owing to its heterogeneity and multimodal nature. To address this, we introduce ContextFormer, a novel plug-and-play method to surgically integrate multimodal contextual information into existing pre-trained forecasting models. ContextFormer effectively distills forecast-specific information from rich multimodal contexts, including categorical, continuous, time-varying, and even textual information, to significantly enhance the performance of existing base forecasters. ContextFormer outperforms SOTA forecasting models by up to 30% on a range of real-world datasets spanning energy, traffic, environmental, and financial domains.
- Abstract(参考訳): 時系列予測は、しばしばそれに対応する歴史に加えて、外生的文脈の特徴の影響を受けている。
例えば、財務状況では、ニュース記事やつぶやきなどの形で、世論や政策決定を考慮せずに株価を正確に予測することは困難である。
これは一般的な知識であるが、現在のSOTA予測モデルは、その異質性やマルチモーダル性のため、そのような文脈情報を組み込むことができない。
そこで本研究では,既存の事前学習予測モデルにマルチモーダルなコンテキスト情報を外科的に統合する新しいプラグイン・アンド・プレイ手法であるContextFormerを紹介する。
ContextFormerは、カテゴリ、連続、時間変化、さらにはテキスト情報を含む、リッチなマルチモーダルコンテキストから予測固有の情報を効果的に蒸留し、既存のベース予測器の性能を大幅に向上させる。
ContextFormerは、エネルギー、トラフィック、環境、金融ドメインにまたがるさまざまな実世界のデータセットにおいて、SOTA予測モデルを最大30%向上させる。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
時系列予測のためのMetaTST(Metadata-informed Time Series Transformer)を提案する。
メタデータの非構造化の性質に取り組むため、MetaTSTは、事前に設計されたテンプレートによってそれらを自然言語に形式化する。
Transformerエンコーダは、メタデータ情報によるシーケンス表現を拡張するシリーズトークンとメタデータトークンの通信に使用される。
論文 参考訳(メタデータ) (2024-10-04T11:37:55Z) - Detection of Temporality at Discourse Level on Financial News by Combining Natural Language Processing and Machine Learning [8.504685056067144]
Bloomberg News、CNN Business、Forbesといった金融関連のニュースは、市場スクリーニングシステムにとって貴重なデータ源である。
談話レベルでの財務関連ニュースの時間性を検出する新しいシステムを提案する。
この分野の知識を持つ研究者によって注釈付けされた金融関連ニュースのラベル付きデータセットを用いて,本システムを検証した。
論文 参考訳(メタデータ) (2024-03-30T16:40:10Z) - Modality-aware Transformer for Financial Time series Forecasting [3.401797102198429]
我々は,textitModality-aware Transformer という,新しいマルチモーダルトランスモデルを提案する。
本モデルでは,対象とする時系列を効果的に予測するために,分類的テキストと数値的時系列の両方のパワーを探索することに長けている。
財務データセットに関する我々の実験は、Modality-aware Transformerが既存の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-10-02T14:22:41Z) - Incorporating Pre-trained Model Prompting in Multimodal Stock Volume
Movement Prediction [22.949484374773967]
本稿では,PromptをベースとしたMUltimodal Stock volumE予測モデル(ProMUSE)を提案する。
金融ニュースの理解を深めるために、事前訓練された言語モデルを使用します。
また, この問題を緩和するため, 核融合ヘッドの横にある一方向の頭部を保ちながら, 新たな異方性コントラストアライメントを提案する。
論文 参考訳(メタデータ) (2023-09-11T16:47:01Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
既存のマルチモーダル関係抽出(MRE)研究は、内部情報過剰利用と外部情報過多という2つの共存課題に直面している。
内部情報スクリーニングと外部情報活用を同時に実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:57Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting [70.54920804222031]
本稿では,一般的な確率的マルチビュー予測フレームワークであるCAMulを提案する。
多様なデータソースから表現と不確実性を学ぶことができる。
動的コンテキスト固有の方法で、各データビューからの知識と不確実性を統合する。
CAMulは、他の最先端確率予測モデルよりも精度とキャリブレーションが25%以上向上していることを示す。
論文 参考訳(メタデータ) (2021-09-15T17:13:47Z) - Exploring Context Generalizability in Citywide Crowd Mobility
Prediction: An Analytic Framework and Benchmark [4.367050939292982]
本稿では,コンテキストの一般化性を評価するための統合分析フレームワークと大規模ベンチマークを提案する。
我々は,自転車の走行,地下鉄の乗客流,電気自動車の充電需要といった,群衆の移動予測タスクで実験を行った。
より多くのコンテキスト機能を使用すると、既存のコンテキストモデリング技術で予測がより良くなるとは限らない。
文脈モデリング手法では、ゲート単位を用いて生の文脈特徴を深部予測モデルに組み込むことで、優れた一般化性が得られる。
論文 参考訳(メタデータ) (2021-06-30T13:19:41Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。