論文の概要: FlyAI -- The Next Level of Artificial Intelligence is Unpredictable! Injecting Responses of a Living Fly into Decision Making
- arxiv url: http://arxiv.org/abs/2410.12808v1
- Date: Mon, 30 Sep 2024 17:19:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-20 10:10:25.889273
- Title: FlyAI -- The Next Level of Artificial Intelligence is Unpredictable! Injecting Responses of a Living Fly into Decision Making
- Title(参考訳): FlyAI -- 人工知能の次のレベルは予測できない! 生きた飛行者の反応を意思決定に注入する
- Authors: Denys J. C. Matthies, Ruben Schlonsak, Hanzhi Zhuang, Rui Song,
- Abstract要約: 我々は,リビングフライからの応答を取り入れることで,意思決定の不予測性を向上する新タイプのバイオニックAIを導入する。
私たちのアプローチでは、ハエのさまざまな反応を使って、GobangのゲームでAIエージェントをチューニングします。
- 参考スコア(独自算出の注目度): 6.694375709641935
- License:
- Abstract: In this paper, we introduce a new type of bionic AI that enhances decision-making unpredictability by incorporating responses from a living fly. Traditional AI systems, while reliable and predictable, lack nuanced and sometimes unseasoned decision-making seen in humans. Our approach uses a fly's varied reactions, to tune an AI agent in the game of Gobang. Through a study, we compare the performances of different strategies on altering AI agents and found a bionic AI agent to outperform human as well as conventional and white-noise enhanced AI agents. We contribute a new methodology for creating a bionic random function and strategies to enhance conventional AI agents ultimately improving unpredictability.
- Abstract(参考訳): 本稿では,リビングフライからの応答を取り入れることで,意思決定の不予測性を向上する新タイプのバイオニックAIを提案する。
従来のAIシステムは、信頼性があり予測可能であるが、人間に見られるニュアンスに欠け、時には意味のない意思決定を欠いている。
私たちのアプローチでは、ハエのさまざまな反応を使って、GobangのゲームでAIエージェントをチューニングします。
研究を通じて、AIエージェントを変更するためのさまざまな戦略のパフォーマンスを比較し、従来のホワイトノイズの強化されたAIエージェントと同様に、人間よりも優れたバイオニックAIエージェントを発見した。
我々は、バイオニックランダム関数を作成するための新しい方法論と、予測不可能性を改善する従来のAIエージェントを強化する戦略に貢献する。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - The Role of Heuristics and Biases During Complex Choices with an AI
Teammate [0.0]
古典的な実験手法は、AIヘルパーによる複雑な選択を研究するには不十分である、と我々は主張する。
我々は、フレーミングとアンカー効果が、人々がAIヘルパーと一緒に働く方法に影響を与え、選択結果を予測することを示した。
論文 参考訳(メタデータ) (2023-01-14T20:06:43Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - Measuring an artificial intelligence agent's trust in humans using
machine incentives [2.1016374925364616]
人間に対するAIエージェントの信頼を評価することは難しい。
本稿では,AIエージェントのアルゴリズムやゴールオリエンテーションを変更することなく,機械決定をインセンティブ化する手法を提案する。
我々の実験は、これまでで最も先進的なAI言語モデルの一つがインセンティブに反応して社会行動を変えることを示唆している。
論文 参考訳(メタデータ) (2022-12-27T06:05:49Z) - On Avoiding Power-Seeking by Artificial Intelligence [93.9264437334683]
私たちは、非常にインテリジェントなAIエージェントの振る舞いと人間の関心を協調する方法を知りません。
私は、世界に限られた影響を与え、自律的に力を求めないスマートAIエージェントを構築できるかどうか調査する。
論文 参考訳(メタデータ) (2022-06-23T16:56:21Z) - On the Influence of Explainable AI on Automation Bias [0.0]
我々は、説明可能なAI(XAI)によって自動化バイアスに影響を与える可能性に光を当てることを目指している。
ホテルのレビュー分類に関するオンライン実験を行い、最初の結果について議論する。
論文 参考訳(メタデータ) (2022-04-19T12:54:23Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Instructive artificial intelligence (AI) for human training, assistance,
and explainability [0.24629531282150877]
ニューラルネットワークが従来のAI(XAI)の代替手段として人間の研修生にどのように教えるかを示す。
AIは人間の行動を調べ、より良いパフォーマンスをもたらす人間の戦略のバリエーションを計算する。
結果は、ハナビにおける人間の意思決定と人間-AIチームを改善するAIインストラクションの能力について提示される。
論文 参考訳(メタデータ) (2021-11-02T16:46:46Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。