論文の概要: Qtok: A Comprehensive Framework for Evaluating Multilingual Tokenizer Quality in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.12989v1
- Date: Wed, 16 Oct 2024 19:34:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:22:07.682820
- Title: Qtok: A Comprehensive Framework for Evaluating Multilingual Tokenizer Quality in Large Language Models
- Title(参考訳): Qtok: 大規模言語モデルにおける多言語トケナイザの品質評価のための包括的フレームワーク
- Authors: Iaroslav Chelombitko, Egor Safronov, Aleksey Komissarov,
- Abstract要約: トークン化の品質は、モデルが多様な言語を効果的に扱う能力に大きな影響を及ぼす可能性がある。
Qtokは、多言語環境でのパフォーマンスに特に重点を置いて、トークン化ツールの品質を評価するために設計されたツールである。
Qtokはこれらのメトリクスを適用して、58の公開モデルから13の異なるトークン化子を評価し、異なる言語コンテキストでアウトプットを分析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In the development of Large Language Models (LLMs), considerable attention has been given to the quality of training datasets. However, the role of tokenizers in the LLM training pipeline, particularly for multilingual models, has received less focus. The quality of tokenization can significantly impact a model's ability to handle diverse languages effectively. We introduce Qtok, a tool designed to assess tokenizer quality with a specific emphasis on their performance in multilingual contexts. Our research proposes a set of metrics for evaluating tokenizer quality, including measures of language coverage, token completeness, and distribution across languages and linguistic categories. Qtok applies these metrics to evaluate 13 distinct tokenizers from 58 publicly available models, analyzing their output across different linguistic contexts. Our analysis revealed significant variations in token distribution across languages and categories, highlighting potential biases and areas for improvement in current tokenization strategies. This research contributes to the field of tokenizer evaluation within multilingual LLM development by providing a systematic approach to assessing tokenizer quality. Our findings highlight the critical role of tokenization in multilingual LLM capability. The Qtok tool and our analysis methodology offer practical means for researchers to evaluate and improve tokenization strategies for multilingual applications. We offer a method to compare tokenizer quality across these metrics, which may be useful when selecting or adjusting tokenizers for specific multilingual LLM applications.
- Abstract(参考訳): LLM(Large Language Models)の開発において、トレーニングデータセットの品質に大きな注意が向けられている。
しかし、LLMトレーニングパイプラインにおけるトークンーザの役割は、特に多言語モデルにおいてあまり注目されていない。
トークン化の品質は、モデルが多様な言語を効果的に扱う能力に大きな影響を及ぼす可能性がある。
Qtokは、多言語環境でのパフォーマンスに特に重点を置いて、トークン化ツールの品質を評価するために設計されたツールである。
本研究は, 言語被覆度, トークン完全度, 言語および言語カテゴリ間の分布など, トークン化品質を評価するための指標セットを提案する。
Qtokはこれらのメトリクスを適用して、58の公開モデルから13の異なるトークン化子を評価し、異なる言語コンテキストで出力を分析する。
分析の結果,言語やカテゴリにまたがるトークン分布の有意な変化が明らかとなり,現在のトークン化戦略を改善するための潜在的なバイアスと領域が明らかになった。
本研究は,多言語LCM開発におけるトークン化性能評価の分野において,トークン化品質評価のための体系的アプローチを提供することによって貢献する。
本研究は,多言語LLM機能におけるトークン化の意義を明らかにするものである。
Qtokツールと分析手法は、研究者が多言語アプリケーションのためのトークン化戦略を評価し改善するための実践的な手段を提供する。
この手法は, 特定の多言語 LLM アプリケーションに対して, トークン化器の選択や調整に有用であると考えられる。
関連論文リスト
- How Does Quantization Affect Multilingual LLMs? [50.867324914368524]
量子化技術は、大規模な言語モデルの推論速度と展開を改善するために広く使われている。
量子化多言語LLMの徹底的な分析を行い、言語間の性能と様々なスケールに焦点をあてる。
論文 参考訳(メタデータ) (2024-07-03T15:39:40Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
大規模言語モデル(LLM)は様々な分野において重要になってきており、表現不足の言語における高品質なモデルの緊急性を強調している。
本研究では、データ不足、モデル選択、評価、計算制限など、低リソース言語が直面する固有の課題について検討する。
論文 参考訳(メタデータ) (2024-05-07T21:58:45Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - On the Calibration of Multilingual Question Answering LLMs [57.296161186129545]
複数の多言語大言語モデル(MLLM)のキャリブレーションを様々な質問応答タスクでベンチマークする。
本研究では,分布内,分布外,言語間移動設定におけるキャリブレーションの異なる次元について検討する。
LlaMa2のようなデコーダのみのLLMでは、コンテキスト内学習は多言語データの信頼性校正を改善する。
論文 参考訳(メタデータ) (2023-11-15T03:29:02Z) - Tokenizer Choice For LLM Training: Negligible or Crucial? [30.33170936148845]
24個の単言語LLMと多言語LLMを学習し,トークン化選択が大規模言語モデル(LLM)の下流性能に与える影響について検討した。
トークン化ツールの選択は、ダウンストリームのパフォーマンスとトレーニングコストに大きな影響を与えます。
ヨーロッパの5言語で訓練された多言語トークン化器は,英語と比較して語彙サイズが3倍に大きくなることが示唆された。
論文 参考訳(メタデータ) (2023-10-12T22:44:19Z) - Multi-level Distillation of Semantic Knowledge for Pre-training
Multilingual Language Model [15.839724725094916]
マルチレベル多言語知識蒸留(MMKD)は,多言語言語モデルを改善するための新しい手法である。
我々は、英語のBERTでリッチな意味表現の知識を採用するために、教師中心のフレームワークを採用している。
我々は,XNLI,PAWS-X,XQuADなどの言語間評価ベンチマーク実験を行った。
論文 参考訳(メタデータ) (2022-11-02T15:23:13Z) - Cross-lingual Lifelong Learning [53.06904052325966]
本稿では,言語間連続学習(CCL)の評価パラダイムを提案する。
マルチリンガルなシーケンシャルな学習を特に難しいものにするための洞察を提供する。
この分析の意味は、異なる言語間連続学習のデシダータを測り、バランスをとる方法のレシピを含む。
論文 参考訳(メタデータ) (2022-05-23T09:25:43Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。