論文の概要: Privacy-Preserving Decentralized AI with Confidential Computing
- arxiv url: http://arxiv.org/abs/2410.13752v1
- Date: Thu, 17 Oct 2024 16:50:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:32.555256
- Title: Privacy-Preserving Decentralized AI with Confidential Computing
- Title(参考訳): 機密情報処理によるプライバシ保護型分散AI
- Authors: Dayeol Lee, Jorge Antonio, Hisham Khan,
- Abstract要約: 本稿では、Atoma Network内のCC(Confidential Computing)を用いた分散人工知能(AI)におけるプライバシ保護について述べる。
CCはハードウェアベースのTrusted Execution Environments (TEE)を活用して、機密データ処理の分離を提供する。
私たちはどのようにしてTEEをAtomaの分散フレームワークに統合できるかを検討します。
- 参考スコア(独自算出の注目度): 0.7893328752331561
- License:
- Abstract: This paper addresses privacy protection in decentralized Artificial Intelligence (AI) using Confidential Computing (CC) within the Atoma Network, a decentralized AI platform designed for the Web3 domain. Decentralized AI distributes AI services among multiple entities without centralized oversight, fostering transparency and robustness. However, this structure introduces significant privacy challenges, as sensitive assets such as proprietary models and personal data may be exposed to untrusted participants. Cryptography-based privacy protection techniques such as zero-knowledge machine learning (zkML) suffers prohibitive computational overhead. To address the limitation, we propose leveraging Confidential Computing (CC). Confidential Computing leverages hardware-based Trusted Execution Environments (TEEs) to provide isolation for processing sensitive data, ensuring that both model parameters and user data remain secure, even in decentralized, potentially untrusted environments. While TEEs face a few limitations, we believe they can bridge the privacy gap in decentralized AI. We explore how we can integrate TEEs into Atoma's decentralized framework.
- Abstract(参考訳): 本稿では,Web3ドメイン用に設計された分散AIプラットフォームであるAtoma Network内のCCを用いて,分散人工知能(AI)のプライバシ保護に対処する。
分散AIは、集中的な監視なしにAIサービスを複数のエンティティに分散し、透明性と堅牢性を促進する。
しかし、この構造は、プロプライエタリなモデルや個人データのような機密性の高い資産が信頼できない参加者に暴露される可能性があるため、重大なプライバシー上の問題を引き起こす。
ゼロ知識機械学習(zkML)のような暗号ベースのプライバシ保護技術は、計算オーバーヘッドを禁止している。
この制限に対処するため,我々は Confidential Computing (CC) の活用を提案する。
Confidential Computingは、ハードウェアベースのTrusted Execution Environments(TEEs)を活用して、機密データを処理するための分離を提供し、モデルパラメータとユーザデータの両方が、分散化され、潜在的に信頼できない環境でも、セキュアであることを保証する。
TEEはいくつかの制限に直面していますが、分散AIのプライバシーギャップを埋めることができると考えています。
私たちはどのようにしてTEEをAtomaの分散フレームワークに統合できるかを検討します。
関連論文リスト
- FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
本研究は,IoT環境におけるデータプライバシとセキュリティの向上を目的とした,高度な学習(FL)フレームワークを提案する。
我々は、分散属性ベースの暗号化(DABE)、同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、技術を統合する。
従来のFLとは異なり、当社のフレームワークはIoTデバイス上で、セキュアで分散化された認証と暗号化を可能にする。
論文 参考訳(メタデータ) (2024-10-26T19:30:53Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - Decentralized Intelligence Network (DIN) [0.0]
分散インテリジェンスネットワーク(Decentralized Intelligence Network, DIN)は、AI開発における課題に対処するために設計された理論フレームワークである。
このフレームワークは、参加者がデータのコントロールを維持し、金銭的に利益を享受し、分散型でスケーラブルなエコシステムに貢献できるようにすることで、効果的なAIトレーニングをサポートする。
論文 参考訳(メタデータ) (2024-07-02T17:40:06Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
セキュアなマルチパーティ計算をSolidと統合するためのモジュール設計を提案する。
私たちのアーキテクチャであるLibertasでは、基盤となるSolidの設計にプロトコルレベルの変更は必要ありません。
既存の差分プライバシー技術と組み合わせて、出力プライバシーを確保する方法を示す。
論文 参考訳(メタデータ) (2023-09-28T12:07:40Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - APPFLChain: A Privacy Protection Distributed Artificial-Intelligence
Architecture Based on Federated Learning and Consortium Blockchain [6.054775780656853]
APPFLChainと呼ばれる新しいシステムアーキテクチャを提案する。
これはHyperledger Fabricベースのブロックチェーンとフェデレーション学習パラダイムの統合アーキテクチャである。
我々の新しいシステムは、機密性の高い個人情報をサーバに共有する必要がないため、高いセキュリティとプライバシを維持することができる。
論文 参考訳(メタデータ) (2022-06-26T05:30:07Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
本稿では,DQNエージェントが,離散的かつ連続的な状態空間を持つ環境でどのように動作するかを予備的,実験的に検討する。
その結果,非決定論的暗号が存在する場合でも,エージェントは依然として小さな状態空間で学習することができるが,より複雑な環境では性能が低下することがわかった。
論文 参考訳(メタデータ) (2021-09-16T21:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。