論文の概要: Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation
- arxiv url: http://arxiv.org/abs/2410.13794v1
- Date: Thu, 17 Oct 2024 17:34:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:48.530169
- Title: Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation
- Title(参考訳): 多物理エミュレーションのための任意条件多重ファンクション拡散
- Authors: Da Long, Zhitong Xu, Guang Yang, Akil Narayan, Shandian Zhe,
- Abstract要約: ACMFD(Arbitrally-Conditioned Multi-Functional Diffusion)を多物理エミュレーションのための多元的確率的サロゲートモデルとして提案する。
ACMFDは、フォワード予測、様々な逆問題、システム全体や他で条件付けられた量のサブセットのデータシミュレーションを含む、単一のフレームワーク内で幅広いタスクを実行できる。
複数の基本的多物理系におけるACMFDの利点を実証する。
- 参考スコア(独自算出の注目度): 17.67789938326378
- License:
- Abstract: Modern physics simulation often involves multiple functions of interests, and traditional numerical approaches are known to be complex and computationally costly. While machine learning-based surrogate models can offer significant cost reductions, most focus on a single task, such as forward prediction, and typically lack uncertainty quantification -- an essential component in many applications. To overcome these limitations, we propose Arbitrarily-Conditioned Multi-Functional Diffusion (ACMFD), a versatile probabilistic surrogate model for multi-physics emulation. ACMFD can perform a wide range of tasks within a single framework, including forward prediction, various inverse problems, and simulating data for entire systems or subsets of quantities conditioned on others. Specifically, we extend the standard Denoising Diffusion Probabilistic Model (DDPM) for multi-functional generation by modeling noise as Gaussian processes (GP). We then introduce an innovative denoising loss. The training involves randomly sampling the conditioned part and fitting the corresponding predicted noise to zero, enabling ACMFD to flexibly generate function values conditioned on any other functions or quantities. To enable efficient training and sampling, and to flexibly handle irregularly sampled data, we use GPs to interpolate function samples onto a grid, inducing a Kronecker product structure for efficient computation. We demonstrate the advantages of ACMFD across several fundamental multi-physics systems.
- Abstract(参考訳): 現代物理学のシミュレーションは、しばしば関心の複数の関数を伴い、伝統的な数値的なアプローチは複雑で計算に費用がかかることが知られている。
機械学習ベースのサロゲートモデルは大幅なコスト削減を提供するが、ほとんどの場合、フォワード予測のような単一のタスクに焦点を当て、多くのアプリケーションにおいて不可欠なコンポーネントである不確実な定量化が欠如している。
これらの制約を克服するため,多物理エミュレーションのための多変数確率的代理モデルであるArbitrally-Conditioned Multi-Functional Diffusion (ACMFD)を提案する。
ACMFDは、フォワード予測、様々な逆問題、システム全体や他で条件付けられた量のサブセットのデータシミュレーションを含む、単一のフレームワーク内で幅広いタスクを実行できる。
具体的には、ノイズをガウス過程(GP)としてモデル化することにより、多機能生成のための標準拡散確率モデル(DDPM)を拡張する。
そして、革新的なデノベーション損失を導入します。
トレーニングでは、条件付き部分をランダムにサンプリングし、対応する予測ノイズをゼロにすることで、ACMFDは任意の他の関数や量に対して条件付き関数値を柔軟に生成することができる。
効率的なトレーニングとサンプリングを可能にし,不規則なサンプルデータを柔軟に処理するために,我々はGPを用いて関数サンプルをグリッドに補間し,効率的な計算のためにKronecker積構造を誘導する。
複数の基本的多物理系におけるACMFDの利点を実証する。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - FFHFlow: A Flow-based Variational Approach for Multi-fingered Grasp Synthesis in Real Time [19.308304984645684]
正規化フロー(NF)に基づくDGM(Deep Generative Model)の利用を提案する。
我々はまず,不完全点雲上に条件付きグリップ分布を学習するために,単一条件NF(cNFs)を直接適用することにより,多様性の向上を推し進めた。
これにより、我々は新しいフローベースd Deep Latent Variable Model (DLVM)を開発する動機となった。
変分オートエンコーダ(VAE)とは異なり、提案するDLVMは2つのcNFを事前分布と可能性分布に利用することにより、典型的な落とし穴に対処する。
論文 参考訳(メタデータ) (2024-07-21T13:33:08Z) - Diffusion-Generative Multi-Fidelity Learning for Physical Simulation [24.723536390322582]
本研究では,微分方程式(SDE)に基づく拡散生成多忠実学習法を開発した。
付加的な入力(時間変数や空間変数)を条件にすることで、我々のモデルは効率的に多次元の解列を学習し、予測することができる。
論文 参考訳(メタデータ) (2023-11-09T18:59:05Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
本稿では,時系列データの累積分布関数(CDF)をモデル化するための新しいアーキテクチャであるPerceiver-CDFを提案する。
提案手法は,マルチモーダル時系列予測に適したコプラに基づくアテンション機構と,知覚アーキテクチャを組み合わせたものである。
単調かつマルチモーダルなベンチマークの実験は、最先端の手法よりも20%改善されていることを一貫して示している。
論文 参考訳(メタデータ) (2023-10-03T01:13:17Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A Variational Infinite Mixture for Probabilistic Inverse Dynamics
Learning [34.90240171916858]
確率的局所モデルの無限混合に対する効率的な変分ベイズ推論手法を開発した。
我々は、データ駆動適応、高速予測、不連続関数とヘテロセダスティックノイズに対処する能力の組み合わせにおけるモデルのパワーを強調した。
学習したモデルを用いてBarrett-WAMマニピュレータのオンライン動的制御を行い、軌道追跡性能を大幅に改善した。
論文 参考訳(メタデータ) (2020-11-10T16:15:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。