論文の概要: Large Language Model-driven Multi-Agent Simulation for News Diffusion Under Different Network Structures
- arxiv url: http://arxiv.org/abs/2410.13909v1
- Date: Wed, 16 Oct 2024 23:58:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:14.346458
- Title: Large Language Model-driven Multi-Agent Simulation for News Diffusion Under Different Network Structures
- Title(参考訳): 異なるネットワーク構造下でのニュース拡散のための大規模言語モデル駆動型マルチエージェントシミュレーション
- Authors: Xinyi Li, Yu Xu, Yongfeng Zhang, Edward C. Malthouse,
- Abstract要約: この研究は、情報エコシステム内の複雑な相互作用を再現するために、大規模言語モデル(LLM)によるマルチエージェントシミュレーションを用いている。
エージェントのパーソナリティやネットワーク構造など,ニュースの伝播を促進する重要な要因について検討する。
我々は3つの対策策を評価し、ネットワーク内の影響力のあるエージェントをブロックするブルートフォースを発見するか、あるいはニュースの正確性を示すことで、誤情報を効果的に軽減することができる。
- 参考スコア(独自算出の注目度): 36.45109260662318
- License:
- Abstract: The proliferation of fake news in the digital age has raised critical concerns, particularly regarding its impact on societal trust and democratic processes. Diverging from conventional agent-based simulation approaches, this work introduces an innovative approach by employing a large language model (LLM)-driven multi-agent simulation to replicate complex interactions within information ecosystems. We investigate key factors that facilitate news propagation, such as agent personalities and network structures, while also evaluating strategies to combat misinformation. Through simulations across varying network structures, we demonstrate the potential of LLM-based agents in modeling the dynamics of misinformation spread, validating the influence of agent traits on the diffusion process. Our findings emphasize the advantages of LLM-based simulations over traditional techniques, as they uncover underlying causes of information spread -- such as agents promoting discussions -- beyond the predefined rules typically employed in existing agent-based models. Additionally, we evaluate three countermeasure strategies, discovering that brute-force blocking influential agents in the network or announcing news accuracy can effectively mitigate misinformation. However, their effectiveness is influenced by the network structure, highlighting the importance of considering network structure in the development of future misinformation countermeasures.
- Abstract(参考訳): デジタル時代におけるフェイクニュースの拡散は、特に社会的信頼と民主的プロセスへの影響について重要な懸念を提起している。
本研究は,従来のエージェント・ベース・シミュレーション・アプローチと異なり,情報エコシステム内の複雑な相互作用を再現するために,大規模言語モデル(LLM)駆動のマルチエージェント・シミュレーションを用いることによって,革新的なアプローチを導入する。
エージェント・パーソナリティやネットワーク構造など,ニュースの伝播を促進する重要な要因について検討するとともに,誤情報対策戦略の評価を行った。
各種ネットワーク構造のシミュレーションを通じて,誤情報拡散のダイナミクスをモデル化し,エージェント特性が拡散過程に与える影響を検証した。
本研究は,従来のエージェントベースモデルで一般的に用いられる事前定義されたルールを超える,情報拡散の根本原因を明らかにするため,従来の手法よりもLCMに基づくシミュレーションの利点を強調した。
さらに,ネットワーク内の影響力のあるエージェントを非力でブロックしたり,ニュースの精度を公表したりすることで,誤報を効果的に軽減する3つの対策策を評価する。
しかし、その効果はネットワーク構造の影響を受けており、今後の誤報対策の開発においてネットワーク構造を考えることの重要性を強調している。
関連論文リスト
- Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP)は、大規模言語モデルが言語構造をどのように処理するかを分析するために設計された方法論である。
CAPは様々なモデルレベルで構成型プールを通してモデル活性化に介入する。
論文 参考訳(メタデータ) (2024-10-16T18:10:50Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
本稿では、因果推論理論に基づく新しい手法TRACERを紹介し、DNN決定の根底にある因果ダイナミクスを推定する。
提案手法は入力特徴に系統的に介入し,特定の変化がネットワークを介してどのように伝播するかを観察し,内部の活性化と最終的な出力に影響を与える。
TRACERはさらに、モデルバイアスの可能性のある反ファクトを生成することで説明可能性を高め、誤分類に対する対照的な説明を提供する。
論文 参考訳(メタデータ) (2024-10-07T20:44:53Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and Language Models in Modern Organizations [0.0]
本稿では,マルチエージェントシステム理論(SMA)と大規模言語モデル(LLM)に基づく計算エンティティがユーザインタラクションに与える影響について考察する。
提案手法では,大規模言語モデル (LLM) から発達したエージェントを用いて,行動要素を考慮したプロトタイピングを行う。
我々は,多エージェントシステム理論(SMA)と大規模言語モデル(LLM)に基づく革新的な利用に基づいて,組織戦略に有用なエージェントの開発の可能性を示す。
論文 参考訳(メタデータ) (2024-03-12T15:56:10Z) - Digital cloning of online social networks for language-sensitive
agent-based modeling of misinformation spread [0.0]
オンラインソーシャルネットワーク内で拡散する誤情報を研究するためのシミュレーションフレームワークを開発する。
我々は、ソーシャルメディア履歴を1万人以上のユーザー向けにダウンロードすることで、既知の偽情報共有ネットワークの「デジタルクローン」を作成する。
論文 参考訳(メタデータ) (2024-01-23T06:02:03Z) - Collaborative Information Dissemination with Graph-based Multi-Agent
Reinforcement Learning [2.9904113489777826]
本稿では,効率的な情報伝達のためのマルチエージェント強化学習(MARL)手法を提案する。
本稿では,各エージェントが個別にメッセージ転送を決定するための情報発信のための部分観測可能なゲーム(POSG)を提案する。
実験の結果,既存の手法よりも訓練済みの方針が優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-25T21:30:16Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。