論文の概要: Identifying High Consideration E-Commerce Search Queries
- arxiv url: http://arxiv.org/abs/2410.13951v1
- Date: Thu, 17 Oct 2024 18:22:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:35.318218
- Title: Identifying High Consideration E-Commerce Search Queries
- Title(参考訳): 電子商取引検索クエリの高精細化
- Authors: Zhiyu Chen, Jason Choi, Besnik Fetahu, Shervin Malmasi,
- Abstract要約: 本稿では,Eコマースサイトにおけるハイリフレクション(HC)クエリを識別するために,EQR(Engagement-based Query Ranking)アプローチを提案する。
EQRは、人気信号よりも、顧客の行動、財務、カタログ情報に関連するクエリレベルの特徴を優先する。
モデルは商業的にデプロイされ、ダウンストリームの顧客への影響の観点から、人間の選択したクエリよりも優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 27.209699168631445
- License:
- Abstract: In e-commerce, high consideration search missions typically require careful and elaborate decision making, and involve a substantial research investment from customers. We consider the task of identifying High Consideration (HC) queries. Identifying such queries enables e-commerce sites to better serve user needs using targeted experiences such as curated QA widgets that help users reach purchase decisions. We explore the task by proposing an Engagement-based Query Ranking (EQR) approach, focusing on query ranking to indicate potential engagement levels with query-related shopping knowledge content during product search. Unlike previous studies on predicting trends, EQR prioritizes query-level features related to customer behavior, finance, and catalog information rather than popularity signals. We introduce an accurate and scalable method for EQR and present experimental results demonstrating its effectiveness. Offline experiments show strong ranking performance. Human evaluation shows a precision of 96% for HC queries identified by our model. The model was commercially deployed, and shown to outperform human-selected queries in terms of downstream customer impact, as measured through engagement.
- Abstract(参考訳): 電子商取引では、高い考慮事項の探索ミッションは、一般的に慎重に精巧な意思決定を必要とし、顧客からのかなりの研究投資を伴います。
本稿では,ハイリフレクション (HC) クエリを識別する作業について考察する。
このようなクエリを識別することで、Eコマースサイトは、ユーザが購入決定に到達するのに役立つ、キュレートされたQAウィジェットなどのターゲットエクスペリエンスを使用して、ユーザニーズによりよいサービスを提供することができる。
本稿では, 商品検索におけるクエリ関連ショッピング知識コンテンツによるエンゲージメントに基づくクエリランク付け(EQR)手法を提案する。
予測トレンドに関する以前の研究とは異なり、EQRは人気信号ではなく、顧客の行動、財務、カタログ情報に関連するクエリレベルの特徴を優先している。
EQRの高精度でスケーラブルな手法を導入し,その有効性を示す実験結果を示す。
オフライン実験は高いランク付け性能を示している。
人体評価の結果,HCクエリの精度は96%であった。
モデルは商業的にデプロイされ、エンゲージメントを通じて測定されたように、ダウンストリームの顧客への影響の観点から、人間の選択したクエリよりも優れたパフォーマンスを示す。
関連論文リスト
- Centrality-aware Product Retrieval and Ranking [14.710718676076327]
本稿では,ユーザの検索クエリに関連する製品ランキングを強化することで,eコマースプラットフォーム上でのユーザエクスペリエンス向上の課題に対処する。
eBayのサンプルをキュレートし、購入者中心の関連スコアと集中度スコアを手作業でアノテートしました。
本稿では,既存モデルに対するユーザインテリジェンス中心性最適化(UCO)アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-21T11:59:14Z) - Exploring Query Understanding for Amazon Product Search [62.53282527112405]
問合せ理解に基づくランキング機能がどのようにランキングに影響を及ぼすかを検討する。
ランク付けのためのクエリ理解に基づくマルチタスク学習フレームワークを提案する。
本研究は,Amazon Searchにおける実世界のシステムを用いた調査・調査である。
論文 参考訳(メタデータ) (2024-08-05T03:33:11Z) - ProductAgent: Benchmarking Conversational Product Search Agent with Asking Clarification Questions [68.81939215223818]
ProductAgentは,戦略的明確化質問生成機能と動的製品検索機能を備えた対話情報探索エージェントである。
我々は,製品特徴の要約,クエリ生成,製品検索のための戦略を持ったエージェントを開発する。
実験の結果,ProductAgentはユーザとポジティブに対話し,対話のターンの増加に伴う検索性能の向上を図っている。
論文 参考訳(メタデータ) (2024-07-01T03:50:23Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
検索クエリに対する検索および再ランクされたアイテムの高い関連性は、製品検索の成功の土台である。
本稿では,大規模言語モデル(LLM)を活用して,クエリ・イテムペア(QIP)の関連判断を大規模に自動化する手法について述べる。
本研究は,製品検索における関連判断の自動化の分野への直接的な影響を示唆するものである。
論文 参考訳(メタデータ) (2024-06-01T00:52:41Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
エンティティベース関連モデル(EBRM)と呼ばれる新しいモデルを提案する。
この分解により、高精度にクロスエンコーダQE関連モジュールを使用できる。
また、ユーザログから自動生成されたQEデータによるQEモジュールの事前トレーニングにより、全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-07-01T15:44:53Z) - Generate-then-Retrieve: Intent-Aware FAQ Retrieval in Product Search [20.216161323866867]
FAQ検索は,質問意図のあるユーザクエリに対して,共通の問合せペアを検索することを目的としている。
製品検索にFAQ検索を統合することで、ユーザーはより情報のある購入決定をすることができるだけでなく、購入後の効率的なサポートを通じてユーザーの保持を高めることができる。
本稿では,(1)ユーザの情報が必要なタイミングをFAQで予測する意図分類器,(2)クエリを自然な質問に書き換える修正モデルからなる意図認識型FAQ検索システムを提案する。
論文 参考訳(メタデータ) (2023-06-06T05:18:21Z) - Justification of Recommender Systems Results: A Service-based Approach [4.640835690336653]
本稿では,サービスモデルを用いて商品とのインタラクションのすべての段階に関するレビューから経験データを抽出する,新たな正当化手法を提案する。
ユーザスタディでは,提案手法を,推奨システムの結果の正当性を反映したベースラインと比較した。
我々のモデルは、好奇心のレベルが異なるユーザや、認知の必要度(NfC)の低いユーザによって、より高いインタフェース適合度と満足度の評価を受けた。
これらの知見は、推薦システムの結果を正当化するためのサービスモデルの導入を奨励するが、多様なインタラクションニーズに適合するパーソナライズ戦略の調査を推奨する。
論文 参考訳(メタデータ) (2022-11-07T11:08:19Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
本稿では,検索システムの2つのクラスにおいて,クエリとドキュメントの役割を逆転させることにより,検索タスクとしてのEQIの実現可能性について検討する。
本研究では,クエリのランク付けの質を評価するための評価基準を導出するとともに,近似EQIの様々な実践的側面に着目した経験的分析を行う。
論文 参考訳(メタデータ) (2021-10-14T20:19:27Z) - High Quality Related Search Query Suggestions using Deep Reinforcement
Learning [0.15229257192293202]
The High Quality Related Search Query Suggestions” タスクは,リアルタイムで正確で,多様な,関連性の高い検索クエリを推奨することを目的としている。
私たちは、ユーザが次に入力するクエリを予測するために、Deep Reinforcement Learningモデルをトレーニングします。
報酬信号は、長期セッションベースのユーザフィードバック、構文的関連性、および生成されたクエリの自然性から成り立っている。
論文 参考訳(メタデータ) (2021-08-10T05:22:32Z) - Mining Implicit Relevance Feedback from User Behavior for Web Question
Answering [92.45607094299181]
本研究は,ユーザ行動と通過関連性との関連性を検討するための最初の研究である。
提案手法は,追加のラベル付きデータを使わずにパスランキングの精度を大幅に向上させる。
実際にこの研究は、グローバルな商用検索エンジンにおけるQAサービスの人為的ラベリングコストを大幅に削減する効果が証明されている。
論文 参考訳(メタデータ) (2020-06-13T07:02:08Z) - Review-guided Helpful Answer Identification in E-commerce [38.276241153439955]
製品固有のコミュニティ質問応答プラットフォームは、潜在的な顧客の懸念に対処するのに大いに役立ちます。
このようなプラットフォーム上でユーザが提供する回答は、その品質に大きく違いがあります。
コミュニティからのヘルプフルネスの投票は、回答の全体的な品質を示すことができるが、しばしば欠落している。
論文 参考訳(メタデータ) (2020-03-13T11:34:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。