論文の概要: Nova: An Iterative Planning and Search Approach to Enhance Novelty and Diversity of LLM Generated Ideas
- arxiv url: http://arxiv.org/abs/2410.14255v2
- Date: Sun, 27 Oct 2024 04:02:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:26.559449
- Title: Nova: An Iterative Planning and Search Approach to Enhance Novelty and Diversity of LLM Generated Ideas
- Title(参考訳): Nova: LLM生成思想の新規性と多様性を高めるための反復的計画と探索アプローチ
- Authors: Xiang Hu, Hongyu Fu, Jinge Wang, Yifeng Wang, Zhikun Li, Renjun Xu, Yu Lu, Yaochu Jin, Lili Pan, Zhenzhong Lan,
- Abstract要約: 我々は,大規模言語モデル(LLM)の創造的可能性を高めるために,拡張計画と探索手法を導入する。
我々の枠組みは、特に新規性と多様性において、生成したアイデアの質を大幅に高める。
本手法は,スイスのトーナメント評価において,170枚のシード論文に基づいて,少なくとも2.5倍以上の上位のアイデアを生成する。
- 参考スコア(独自算出の注目度): 30.3756058589173
- License:
- Abstract: Scientific innovation is pivotal for humanity, and harnessing large language models (LLMs) to generate research ideas could transform discovery. However, existing LLMs often produce simplistic and repetitive suggestions due to their limited ability in acquiring external knowledge for innovation. To address this problem, we introduce an enhanced planning and search methodology designed to boost the creative potential of LLM-based systems. Our approach involves an iterative process to purposely plan the retrieval of external knowledge, progressively enriching the idea generation with broader and deeper insights. Validation through automated and human assessments indicates that our framework substantially elevates the quality of generated ideas, particularly in novelty and diversity. The number of unique novel ideas produced by our framework is 3.4 times higher than without it. Moreover, our method outperforms the current state-of-the-art, generating at least 2.5 times more top-rated ideas based on 170 seed papers in a Swiss Tournament evaluation.
- Abstract(参考訳): 科学的革新は人類にとって重要なものであり、研究のアイデアを生み出すために大きな言語モデル(LLM)を活用することは発見を変革する可能性がある。
しかし、既存のLLMは、イノベーションのための外部知識を取得する能力が限られているため、単純かつ反復的な提案をしばしば生み出す。
この問題に対処するために,LLMベースのシステムの創造的可能性を高めるために,計画・探索手法を改良した。
我々のアプローチには、外部知識の検索を意図的に計画する反復的なプロセスが伴い、より広範で深い洞察でアイデア生成を段階的に強化する。
自動的および人的評価による検証は、我々の枠組みが生成したアイデア、特に新規性と多様性の質を大幅に高めることを示している。
私たちのフレームワークが生み出すユニークなアイデアの数は、それのないものよりも3.4倍も高い。
さらに,本手法は現在の最先端技術よりも優れており,スイス・トーナメント評価において,170のシード論文に基づいて,少なくとも2.5倍以上の上位のアイデアが生み出されている。
関連論文リスト
- IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-10-31T17:04:59Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - A Novel Mathematical Framework for Objective Characterization of Ideas through Vector Embeddings in LLM [0.0]
本研究では,CAIシステムや人間によって生み出されるアイデアの多元性を客観的に評価するための,自動解析のための包括的数学的枠組みを提案する。
UMAP,DBSCAN,PCAなどのツールを用いて,アイデアを高次元ベクトルに変換し,それらの多様性を定量的に測定することにより,提案手法は最も有望なアイデアを選択する信頼性と客観的な方法を提供する。
論文 参考訳(メタデータ) (2024-09-11T19:10:29Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
我々は、大規模言語モデルの知識を活用し、科学的アイデアのメリットを評価することを目的としたアイデアアセスメントに焦点をあてる。
我々は、このタスクに対する様々なアプローチのパフォーマンスを訓練し評価するために、細心の注意を払って設計された、フルテキストを持つ約4万の原稿からベンチマークデータセットをリリースする。
その結果, 大規模言語モデルの表現は, 生成出力よりもアイデアの価値を定量化する可能性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-09-07T02:07:22Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
大型言語モデル(LLM)は、科学的な発見を加速する可能性についての楽観主義を喚起した。
LLMシステムは、新しい専門家レベルのアイデアを生み出すための第一歩を踏み出すことができるという評価はない。
論文 参考訳(メタデータ) (2024-09-06T08:25:03Z) - Divergent Creativity in Humans and Large Language Models [37.67363469600804]
最近の大規模言語モデルの能力の急上昇は、人間の能力に似た創造性レベルに近づいている、という主張につながっている。
我々は、創造科学の最近の進歩を活用して、最先端のLLMと10万人の実質的なデータセットの両方において、多様な創造性を詳細に分析するためのフレームワークを構築します。
論文 参考訳(メタデータ) (2024-05-13T22:37:52Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - AutoTRIZ: Artificial Ideation with TRIZ and Large Language Models [2.7624021966289605]
発明的問題解決の理論は、体系的なイノベーションに広く適用されている。
TRIZリソースと概念の複雑さは、ユーザの知識、経験、推論能力への依存と相まって、実用性を制限する。
提案するAutoTRIZは,LPMを用いてTRIZ手法を自動化・拡張する人工的思考ツールである。
論文 参考訳(メタデータ) (2024-03-13T02:53:36Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
本稿では,新たなオープンワールド機械学習パラダイムを包括的に紹介することを目的としている。
研究者がそれぞれの分野でより強力なAIシステムを構築するのを支援し、人工知能の開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T06:25:26Z) - Prompting Diverse Ideas: Increasing AI Idea Variance [0.0]
この論文は、アイデア生成プロセスの生産性と品質を高めるために、人工知能を活用することへの新たな関心を掘り下げるものである。
これまでの研究によると、AIのアイデアの平均品質は非常に高い。
以前の研究では、AIベースのブレインストーミングが、アイデアの十分な分散を生み出すことができないことも指摘されている。
論文 参考訳(メタデータ) (2024-01-27T21:02:50Z) - SciMON: Scientific Inspiration Machines Optimized for Novelty [68.46036589035539]
文献に基づく新たな科学的方向を生成するために,ニューラルランゲージモデルを探索し,拡張する。
モデルが入力背景コンテキストとして使用される新しい設定で、劇的な出発をとっています。
本稿では,過去の科学的論文から「吸入」を抽出するモデリングフレームワークであるSciMONを紹介する。
論文 参考訳(メタデータ) (2023-05-23T17:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。