Acute Lymphoblastic Leukemia Diagnosis Employing YOLOv11, YOLOv8, ResNet50, and Inception-ResNet-v2 Deep Learning Models
- URL: http://arxiv.org/abs/2502.09804v1
- Date: Thu, 13 Feb 2025 22:43:28 GMT
- Title: Acute Lymphoblastic Leukemia Diagnosis Employing YOLOv11, YOLOv8, ResNet50, and Inception-ResNet-v2 Deep Learning Models
- Authors: Alaa Awad, Salah A. Aly,
- Abstract summary: This study aims to utilize image processing and deep learning methodologies to achieve state-of-the-art results for the detection of Acute Lymphoblastic Leukemia (ALL)
By utilizing advanced deep learning models, namely, YOLOv8, YOLOv11, ResNet50 and Inception-ResNet-v2, the study achieves accuracy rates as high as 99.7%.
- Score: 0.0
- License:
- Abstract: Thousands of individuals succumb annually to leukemia alone. As artificial intelligence-driven technologies continue to evolve and advance, the question of their applicability and reliability remains unresolved. This study aims to utilize image processing and deep learning methodologies to achieve state-of-the-art results for the detection of Acute Lymphoblastic Leukemia (ALL) using data that best represents real-world scenarios. ALL is one of several types of blood cancer, and it is an aggressive form of leukemia. In this investigation, we examine the most recent advancements in ALL detection, as well as the latest iteration of the YOLO series and its performance. We address the question of whether white blood cells are malignant or benign. Additionally, the proposed models can identify different ALL stages, including early stages. Furthermore, these models can detect hematogones despite their frequent misclassification as ALL. By utilizing advanced deep learning models, namely, YOLOv8, YOLOv11, ResNet50 and Inception-ResNet-v2, the study achieves accuracy rates as high as 99.7%, demonstrating the effectiveness of these algorithms across multiple datasets and various real-world situations.
Related papers
- Detection and Classification of Acute Lymphoblastic Leukemia Utilizing Deep Transfer Learning [0.0]
This study proposes a novel approach for diagnosing leukemia across four stages.
We employed two Convolutional Neural Network (CNN) models as MobileNetV2 with an altered head and a custom model.
The custom model achieved an accuracy of 98.6%, while MobileNetV2 attained a superior accuracy of 99.69%.
arXiv Detail & Related papers (2025-01-24T04:16:03Z) - Transforming Blood Cell Detection and Classification with Advanced Deep Learning Models: A Comparative Study [2.3942577670144423]
This study utilizes a YOLOv10 model trained on Roboflow data with images resized to 640x640 pixels across varying epochs.
The results show that increased training epochs significantly enhance accuracy, precision, and recall, particularly in real-time blood cell detection & classification.
arXiv Detail & Related papers (2024-10-21T06:23:13Z) - A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification [1.024113475677323]
Leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation.
Deep learning has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells.
In this research, hybrid deep learning models were implemented to classify Acute lymphoblastic leukemia (ALL)
The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset.
arXiv Detail & Related papers (2024-10-18T15:23:34Z) - Early Diagnosis of Acute Lymphoblastic Leukemia Using YOLOv8 and YOLOv11 Deep Learning Models [0.0]
Leukemia, a severe form of blood cancer, claims thousands of lives each year.
This study focuses on the detection of Acute Lymphoblastic Leukemia (ALL) using advanced image processing and deep learning techniques.
arXiv Detail & Related papers (2024-10-14T16:42:07Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense
Active Learning for Super-resolution [47.38982697349244]
Dense regression is a widely used approach in computer vision for tasks such as image super-resolution, enhancement, depth estimation, etc.
We propose incorporating active learning into dense regression models to address this problem.
Active learning allows models to select the most informative samples for labeling, reducing the overall annotation cost while improving performance.
arXiv Detail & Related papers (2023-05-27T16:33:43Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.