論文の概要: Understanding the difficulty of low-precision post-training quantization of large language models
- arxiv url: http://arxiv.org/abs/2410.14570v1
- Date: Fri, 18 Oct 2024 16:16:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:41.633406
- Title: Understanding the difficulty of low-precision post-training quantization of large language models
- Title(参考訳): 大規模言語モデルの低精度後学習量子化の難しさを理解する
- Authors: Zifei Xu, Sayeh Sharify, Wanzin Yazar, Tristan Webb, Xin Wang,
- Abstract要約: 高いパラメータ数を持つ大規模言語モデルは計算コストが高いが、その重みを非常に低い数値精度に圧縮することで、はるかに効率的にすることができる。
同じデータ制約下では、前者のアプローチは後者よりもほぼ常に悪化しており、数値精度が非常に低い場合に特に顕著な現象である。
- 参考スコア(独自算出の注目度): 4.5529796609245805
- License:
- Abstract: Large language models of high parameter counts are computationally expensive, yet can be made much more efficient by compressing their weights to very low numerical precision. This can be achieved either through post-training quantization by minimizing local, layer-wise quantization errors, or through quantization-aware fine-tuning by minimizing the global loss function. In this study, we discovered that, under the same data constraint, the former approach nearly always fared worse than the latter, a phenomenon particularly prominent when the numerical precision is very low. We further showed that this difficulty of post-training quantization arose from stark misalignment between optimization of the local and global objective functions. Our findings explains limited utility in minimization of local quantization error and the importance of direct quantization-aware fine-tuning, in the regime of large models at very low precision.
- Abstract(参考訳): 高いパラメータ数を持つ大規模言語モデルは計算コストが高いが、その重みを非常に低い数値精度に圧縮することで、はるかに効率的にすることができる。
これは、局所的、層単位での量子化誤差を最小化することで、またはグローバルな損失関数を最小化することによって、量子化後の量子化によって達成できる。
本研究では,同じデータ制約下では,数値精度が極めて低い場合に特に顕著な現象として,前者のアプローチが後者よりも常に悪くなることを発見した。
さらに、この学習後の量子化の難しさは、局所的目的関数と大域的目的関数の最適化の相違から生じることを示した。
本研究は,局所量子化誤差の最小化と,大規模モデルの極低精度化における直接量子化対応微調整の重要性について述べる。
関連論文リスト
- GWQ: Gradient-Aware Weight Quantization for Large Language Models [61.17678373122165]
勾配対応重み量子化(GWQ)は、勾配を利用して外れ値の局所化を行う、低ビット重み量子化のための最初の量子化手法である。
GWQはFP16精度で上位1%の外れ値に対応し、残りの非外れ値重みは低ビットフォーマットで格納される。
ゼロショットタスクでは、GWQ量子化モデルは他の量子化法よりも精度が高い。
論文 参考訳(メタデータ) (2024-10-30T11:16:04Z) - QERA: an Analytical Framework for Quantization Error Reconstruction [12.110441045050223]
重みを極めて低い精度に定量化することへの関心が高まり、結果として生じる誤差を低ランクで高精度なエラー再構成項で相殺する。
量子化と低ランク近似の組み合わせは、アダプタベースのパラメータ効率の微調整法の両方で人気がある。
本稿では,QERA(Quantization Error Reconstruction Analysis)という解析フレームワークを定式化し,その問題に対するクローズドフォームのソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-08T13:37:34Z) - Toward INT4 Fixed-Point Training via Exploring Quantization Error for Gradients [24.973203825917906]
大振幅勾配の誤差の低減は量子化性能を著しく向上させることを示す。
また、大きな勾配に対する小さな量子化誤差を維持するために、量子化間隔を適応的に調整する間隔更新アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-07-17T15:06:12Z) - Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
本稿では,革新的な量子化学習手法である高粒度量子化(HGQ)を提案する。
HGQは、勾配降下によって最適化できるようにすることで、重量当たりおよび活動当たりの精度を微調整する。
このアプローチは、演算演算が可能なハードウェア上で、超低レイテンシと低電力ニューラルネットワークを実現する。
論文 参考訳(メタデータ) (2024-05-01T17:18:46Z) - PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks [4.827161693957252]
非量子化要素演算は、低精度モデルの推論コストを支配している。
PikeLPNモデルは、要素演算と乗算累積演算の両方に量子化を適用することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-03-29T18:23:34Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - Neural Networks with Quantization Constraints [111.42313650830248]
量子化学習における制約付き学習手法を提案する。
結果の問題は強い双対であり、勾配推定は不要であることを示す。
提案手法は画像分類タスクにおける競合性能を示す。
論文 参考訳(メタデータ) (2022-10-27T17:12:48Z) - Low-Precision Stochastic Gradient Langevin Dynamics [70.69923368584588]
本稿では,低精度のグラジエントランゲヴィンダイナミクスを初めて研究し,性能を犠牲にすることなくコストを大幅に削減できることを示した。
本研究では,各更新ステップの分散を保存したSGLDの新しい量子化関数を開発する。
我々は,低精度のSGLDが,様々なディープラーニングタスクにおいて8ビットしか持たない完全精度のSGLDに匹敵する性能を実現することを実証した。
論文 参考訳(メタデータ) (2022-06-20T17:25:41Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
量子ニューラルネットワークは、レイテンシ、消費電力、モデルサイズをパフォーマンスに大きな影響を与えずに減少させることでよく知られている。
混合精度量子化は、異なるビット幅での算術演算をサポートするカスタマイズされたハードウェアのより良い利用を提供する。
論文 参考訳(メタデータ) (2022-05-30T21:23:22Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
画像超解像のための深い畳み込みニューラルネットワークの定量化は、計算コストを大幅に削減する。
既存の作業は、4ビット以下の超低精度の厳しい性能低下に苦しむか、または性能を回復するために重い微調整プロセスを必要とします。
高精度なトレーニングフリー量子化を実現する新しい分散認識量子化方式(DAQ)を提案する。
論文 参考訳(メタデータ) (2020-12-21T10:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。