論文の概要: A Predictive Approach To Enhance Time-Series Forecasting
- arxiv url: http://arxiv.org/abs/2410.15217v3
- Date: Mon, 29 Sep 2025 00:39:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 20:10:04.166848
- Title: A Predictive Approach To Enhance Time-Series Forecasting
- Title(参考訳): 時系列予測の予測的アプローチ
- Authors: Skye Gunasekaran, Assel Kembay, Hugo Ladret, Rui-Jie Zhu, Laurent Perrinet, Omid Kavehei, Jason Eshraghian,
- Abstract要約: 本稿では、時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
本手法は2つのモデルから構成される: 重要事象を識別するために将来のデータを解析する検出モデルと、これらの事象を現在のデータに基づいて予測する予測モデルである。
脳波データを用いた発作予測ではAUC-ROCが44.8%増加し,非線形力学系ではMSEが23.4%減少した。
- 参考スコア(独自算出の注目度): 6.377828331013327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate time-series forecasting is crucial in various scientific and industrial domains, yet deep learning models often struggle to capture long-term dependencies and adapt to data distribution shifts over time. We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding. Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data. When discrepancies occur between the forecasting and detection models, a more significant update is applied to the forecasting model, effectively minimizing surprise, allowing the forecasting model to dynamically adjust its parameters. We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 23.4% reduction in MSE for forecasting in nonlinear dynamical systems (outlier excluded).By incorporating a predictive feedback mechanism, Future-Guided Learning advances how deep learning is applied to time-series forecasting.
- Abstract(参考訳): 正確な時系列予測は、さまざまな科学分野や産業分野において重要であるが、ディープラーニングモデルは長期的な依存関係を捉え、時間の経過とともにデータ分散の変化に対応するのに苦慮することが多い。
本稿では,予測符号化にインスパイアされた動的フィードバック機構を通じて時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
本手法は2つのモデルから構成される: 重要事象を識別するために将来のデータを解析する検出モデルと、これらの事象を現在のデータに基づいて予測する予測モデルである。
予測モデルと検出モデルの間に不一致が発生した場合、予測モデルに対してより重要な更新が適用され、サプライズを効果的に最小化し、予測モデルがそのパラメータを動的に調整することができる。
我々は,脳波データを用いた発作予知におけるAUC-ROCの44.8%増加,非線形力学系における予測のためのMSEの23.4%減少を示すとともに,様々なタスクに対するアプローチを検証する。
予測フィードバック機構を導入することで、Future-Guided Learningは、時系列予測にディープラーニングがどのように適用されるかを進める。
関連論文リスト
- iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network [29.310194531870323]
信頼性のある時系列予測のための新しい解釈可能なモデルiTFKANを提案する。
iTFKANは、モデルシンボル化によって達成される解釈可能性により、モデル決定の論理と基礎となるデータパターンのさらなる探索を可能にする。
論文 参考訳(メタデータ) (2025-04-23T05:34:49Z) - Wisdom of the Crowds in Forecasting: Forecast Summarization for Supporting Future Event Prediction [17.021220773165016]
Future Event Prediction (FEP) は、複数のドメインにまたがる需要とアプリケーションの範囲にまたがる重要なアクティビティである。
予測方法の1つは、将来についての集合的な意見を収集して集約し、累積的な視点が今後の出来事の可能性を推定する可能性をもたらすように予測することである。
本研究では,個々の予測を集約することで,群衆の知恵に基づく今後のイベント予測を支援するために,既存の研究・フレームワークを編成する。
論文 参考訳(メタデータ) (2025-02-12T08:35:10Z) - Deconfounding Time Series Forecasting [1.5967186772129907]
時系列予測は様々な領域において重要な課題であり、正確な予測は情報的な意思決定を促進する。
従来の予測手法は、しばしば将来の結果を予測するために変数の現在の観測に依存している。
本稿では,過去のデータから得られた潜在的共同設立者の表現を取り入れた予測手法を提案する。
論文 参考訳(メタデータ) (2024-10-27T12:45:42Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
我々は,時系列予測タスクにおけるディープラーニングモデルの堅牢性を調査するツールであるCounterfacTSを提示し,公開する。
CounterfacTSにはユーザフレンドリーなインターフェースがあり、時系列データとその予測を視覚化、比較、定量化することができる。
論文 参考訳(メタデータ) (2024-03-06T07:34:47Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Prediction of rare events in the operation of household equipment using
co-evolving time series [1.1249583407496218]
我々のアプローチは、データの時間的挙動を利用して予測能力を向上する重み付き自己回帰モデルである。
合成および実世界のデータセットの評価は、我々の手法が家庭機器の故障予測手法よりも優れていることを裏付けている。
論文 参考訳(メタデータ) (2023-12-15T00:21:00Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
より長い地平線で安定的に予測するために, 状態作用データに対する教師付き学習のための新しいパラメータ化を提案する。
シミュレーションおよび実験によるロボット作業の結果,軌道に基づくモデルにより,より正確な長期予測が得られた。
論文 参考訳(メタデータ) (2020-12-16T18:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。