論文の概要: Who is Undercover? Guiding LLMs to Explore Multi-Perspective Team Tactic in the Game
- arxiv url: http://arxiv.org/abs/2410.15311v1
- Date: Sun, 20 Oct 2024 06:41:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:22:40.462781
- Title: Who is Undercover? Guiding LLMs to Explore Multi-Perspective Team Tactic in the Game
- Title(参考訳): LLMにゲームにおける多視点チーム戦術の探求を指導する
- Authors: Ruiqi Dong, Zhixuan Liao, Guangwei Lai, Yuhan Ma, Danni Ma, Chenyou Fan,
- Abstract要約: We use the language logic game Who is Undercover?' as a experimental platform to propose the Multi-Perspective Team Tactic (MPTT) framework。
MPTTは、LLMの人間的な言語表現ロジック、多次元思考、複雑なシナリオにおける自己認識の育成を目的としている。
予備的な結果は、MPTTとWIUが組み合わさって、LLMの認知能力を活用して、現実社会をシミュレートできる意思決定フレームワークを作成することを示している。
- 参考スコア(独自算出の注目度): 3.8284679578037246
- License:
- Abstract: Large Language Models (LLMs) are pivotal AI agents in complex tasks but still face challenges in open decision-making problems within complex scenarios. To address this, we use the language logic game ``Who is Undercover?'' (WIU) as an experimental platform to propose the Multi-Perspective Team Tactic (MPTT) framework. MPTT aims to cultivate LLMs' human-like language expression logic, multi-dimensional thinking, and self-perception in complex scenarios. By alternating speaking and voting sessions, integrating techniques like self-perspective, identity-determination, self-reflection, self-summary and multi-round find-teammates, LLM agents make rational decisions through strategic concealment and communication, fostering human-like trust. Preliminary results show that MPTT, combined with WIU, leverages LLMs' cognitive capabilities to create a decision-making framework that can simulate real society. This framework aids minority groups in communication and expression, promoting fairness and diversity in decision-making. Additionally, our Human-in-the-loop experiments demonstrate that LLMs can learn and align with human behaviors through interactive, indicating their potential for active participation in societal decision-making.
- Abstract(参考訳): 大規模言語モデル(LLM)は複雑なタスクにおいて重要なAIエージェントであるが、複雑なシナリオにおけるオープンな意思決定問題では依然として課題に直面している。
これを解決するために、実験的なプラットフォームとして言語論理ゲーム ``Who is Undercover?' (WIU) を使用し、MPTT(Multi-Perspective Team Tactic)フレームワークを提案する。
MPTTは、LLMの人間的な言語表現ロジック、多次元思考、複雑なシナリオにおける自己認識の育成を目的としている。
講演と投票のセッションを交互に行い、自尊心、アイデンティティ決定、自己回帰、自尊心、複数ラウンドのチームメイトといったテクニックを統合することで、LLMエージェントは戦略的隠蔽とコミュニケーションを通じて合理的な決定を行い、人間のような信頼を育む。
予備的な結果は、MPTTとWIUが組み合わさって、LLMの認知能力を活用して、現実社会をシミュレートできる意思決定フレームワークを作成することを示している。
この枠組みは、コミュニケーションと表現における少数派グループを支援し、意思決定における公平性と多様性を促進する。
さらに、私たちのHuman-in-the-loop実験は、LLMが対話的を通して人間の行動を学び、調整できることを示し、社会的意思決定に積極的に参加する可能性を示している。
関連論文リスト
- Evaluating Creativity and Deception in Large Language Models: A Simulation Framework for Multi-Agent Balderdash [6.65572931991284]
大きな言語モデル(LLM)は複雑なタスクや対話的な環境において印象的な機能を示している。
本稿では, LLMの創造性と論理的推論の両面を評価するために, Balderdash を利用したシミュレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-15T18:42:48Z) - LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play [43.55248812883912]
大規模言語モデル(LLM)は自然言語処理において例外的な習熟度を示してきたが、しばしばオープンエンドの質問に対する創造的で独創的な応答を生成できない。
LLM議論は,アイデア交換の活発化と多様化を促進する3段階の議論フレームワークである。
提案手法の有効性を, 代替利用テスト, 類似性テスト, インスタンステスト, 科学的創造性テストを用いて評価した。
論文 参考訳(メタデータ) (2024-05-10T10:19:14Z) - Challenges Faced by Large Language Models in Solving Multi-Agent Flocking [17.081075782529098]
フラッキング(Flocking)とは、システム内の複数のエージェントが衝突を避け、望ましい形成を維持しながら互いに近づこうとする行動である。
近年,大規模言語モデル (LLM) は,個々の意思決定者として様々な協調課題を解くという印象的な能力を示している。
本稿では,マルチエージェント・フロッキングにおいてLLMが直面する課題について論じ,今後の改善分野を提案する。
論文 参考訳(メタデータ) (2024-04-06T22:34:07Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Negotiating with LLMS: Prompt Hacks, Skill Gaps, and Reasoning Deficits [1.2818275315985972]
LLMとの価格交渉において,全年齢層で40人以上の個人を対象とするユーザスタディを実施している。
交渉された価格が、LLMと効果的に相互作用する際のリテラシーのギャップを指摘し、人類が幅広い範囲で達成したことを示す。
論文 参考訳(メタデータ) (2023-11-26T08:44:58Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Leveraging Word Guessing Games to Assess the Intelligence of Large
Language Models [105.39236338147715]
この論文は人気のある言語ゲーム『Who is Spy』にインスパイアされている。
本研究は,LEMの表現と変形能力を評価するためのDEEPを開発する。
次に、インタラクティブなマルチエージェントフレームワークであるSpyGameを紹介します。
論文 参考訳(メタデータ) (2023-10-31T14:37:42Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。