LucidFusion: Reconstructing 3D Gaussians with Arbitrary Unposed Images
- URL: http://arxiv.org/abs/2410.15636v3
- Date: Sat, 08 Mar 2025 12:50:45 GMT
- Title: LucidFusion: Reconstructing 3D Gaussians with Arbitrary Unposed Images
- Authors: Hao He, Yixun Liang, Luozhou Wang, Yuanhao Cai, Xinli Xu, Hao-Xiang Guo, Xiang Wen, Yingcong Chen,
- Abstract summary: We reformulate 3D reconstruction as image-to-image translation and introduce the Relative Coordinate Map (RCM)<n>RCM aligns multiple unposed images to a main view without pose estimation.<n>While RCM simplifies the process, its lack of global 3D supervision can yield noisy outputs.<n>Our LucidFusion framework handles an arbitrary number of unposed inputs, producing robust 3D reconstructions within seconds and paving the way for more flexible, pose-free 3D pipelines.
- Score: 23.96972213606037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent large reconstruction models have made notable progress in generating high-quality 3D objects from single images. However, current reconstruction methods often rely on explicit camera pose estimation or fixed viewpoints, restricting their flexibility and practical applicability. We reformulate 3D reconstruction as image-to-image translation and introduce the Relative Coordinate Map (RCM), which aligns multiple unposed images to a main view without pose estimation. While RCM simplifies the process, its lack of global 3D supervision can yield noisy outputs. To address this, we propose Relative Coordinate Gaussians (RCG) as an extension to RCM, which treats each pixel's coordinates as a Gaussian center and employs differentiable rasterization for consistent geometry and pose recovery. Our LucidFusion framework handles an arbitrary number of unposed inputs, producing robust 3D reconstructions within seconds and paving the way for more flexible, pose-free 3D pipelines.
Related papers
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.
We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.
Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - RoGSplat: Learning Robust Generalizable Human Gaussian Splatting from Sparse Multi-View Images [39.03889696169877]
RoGSplat is a novel approach for synthesizing high-fidelity novel views of unseen human from sparse multi-view images.
Our method outperforms state-of-the-art methods in novel view synthesis and cross-dataset generalization.
arXiv Detail & Related papers (2025-03-18T12:18:34Z) - MUSt3R: Multi-view Network for Stereo 3D Reconstruction [11.61182864709518]
We propose an extension of DUSt3R from pairs to multiple views, that addresses all aforementioned concerns.
We entail the model with a multi-layer memory mechanism which allows to reduce the computational complexity.
The framework is designed to perform 3D reconstruction both offline and online, and hence can be seamlessly applied to SfM and visual SLAM scenarios.
arXiv Detail & Related papers (2025-03-03T15:36:07Z) - FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction [59.77970844874235]
We present FreeSplatter, a feed-forward reconstruction framework capable of generating high-quality 3D Gaussians from sparse-view images.
FreeSplatter is built upon a streamlined transformer architecture, comprising sequential self-attention blocks.
We show FreeSplatter's potential in enhancing the productivity of downstream applications, such as text/image-to-3D content creation.
arXiv Detail & Related papers (2024-12-12T18:52:53Z) - USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
Spike cameras, as an innovative neuromorphic camera that captures scenes with the 0-1 bit stream at 40 kHz, are increasingly employed for the 3D reconstruction task.
Previous spike-based 3D reconstruction approaches often employ a casecased pipeline.
We propose a synergistic optimization framework, textbfUSP-Gaussian, that unifies spike-based image reconstruction, pose correction, and Gaussian splatting into an end-to-end framework.
arXiv Detail & Related papers (2024-11-15T14:15:16Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - UniG: Modelling Unitary 3D Gaussians for View-consistent 3D Reconstruction [20.089890859122168]
We present UniG, a view-consistent 3D reconstruction and novel view synthesis model.
UniG generates a high-fidelity representation of 3D Gaussians from sparse images.
arXiv Detail & Related papers (2024-10-17T03:48:02Z) - Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High-resolution Image-to-3D model (Hi3D) is a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation.
Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior, yielding multi-view images with low-resolution texture details.
arXiv Detail & Related papers (2024-09-11T17:58:57Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image [28.759158325097093]
Unique3D is a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images.
Our framework features state-of-the-art generation fidelity and strong generalizability.
arXiv Detail & Related papers (2024-05-30T17:59:54Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
Multi-view (MV) 3D reconstruction is a promising solution to fuse generated MV images into consistent 3D objects.
However, the generated images usually suffer from inconsistent lighting, misaligned geometry, and sparse views, leading to poor reconstruction quality.
We present a novel 3D reconstruction framework that leverages intrinsic decomposition guidance, transient-mono prior guidance, and view augmentation to cope with the three issues.
arXiv Detail & Related papers (2024-01-29T02:30:31Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
We introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image.
AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization.
We propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module.
arXiv Detail & Related papers (2024-01-08T18:56:33Z) - DMV3D: Denoising Multi-View Diffusion using 3D Large Reconstruction
Model [86.37536249046943]
textbfDMV3D is a novel 3D generation approach that uses a transformer-based 3D large reconstruction model to denoise multi-view diffusion.
Our reconstruction model incorporates a triplane NeRF representation and can denoise noisy multi-view images via NeRF reconstruction and rendering.
arXiv Detail & Related papers (2023-11-15T18:58:41Z) - HoloFusion: Towards Photo-realistic 3D Generative Modeling [77.03830223281787]
Diffusion-based image generators can now produce high-quality and diverse samples, but their success has yet to fully translate to 3D generation.
We present HoloFusion, a method that combines the best of these approaches to produce high-fidelity, plausible, and diverse 3D samples.
arXiv Detail & Related papers (2023-08-28T01:19:33Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - GRAM-HD: 3D-Consistent Image Generation at High Resolution with
Generative Radiance Manifolds [28.660893916203747]
This paper proposes a novel 3D-aware GAN that can generate high resolution images (up to 1024X1024) while keeping strict 3D consistency as in volume rendering.
Our motivation is to achieve super-resolution directly in the 3D space to preserve 3D consistency.
Experiments on FFHQ and AFHQv2 datasets show that our method can produce high-quality 3D-consistent results.
arXiv Detail & Related papers (2022-06-15T02:35:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.