論文の概要: Enabling Energy-Efficient Deployment of Large Language Models on Memristor Crossbar: A Synergy of Large and Small
- arxiv url: http://arxiv.org/abs/2410.15977v1
- Date: Mon, 21 Oct 2024 13:04:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:36.026834
- Title: Enabling Energy-Efficient Deployment of Large Language Models on Memristor Crossbar: A Synergy of Large and Small
- Title(参考訳): Memristor Crossbar上での大規模言語モデルのエネルギー効率向上 -大小の相乗効果-
- Authors: Zhehui Wang, Tao Luo, Cheng Liu, Weichen Liu, Rick Siow Mong Goh, Weng-Fai Wong,
- Abstract要約: 大規模言語モデル(LLM)は、様々な分野において有望な応用が期待されているため、大きな注目を集めている。
メムリスタクロスバーは、小さなフットプリントと驚くほど高いエネルギー効率を示す、有望な解決策として現れている。
本稿では,最新のLCMを単一チップやパッケージに展開可能な,メムリスタクロスバーの新しいアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 16.240522771401384
- License:
- Abstract: Large language models (LLMs) have garnered substantial attention due to their promising applications in diverse domains. Nevertheless, the increasing size of LLMs comes with a significant surge in the computational requirements for training and deployment. Memristor crossbars have emerged as a promising solution, which demonstrated a small footprint and remarkably high energy efficiency in computer vision (CV) models. Memristors possess higher density compared to conventional memory technologies, making them highly suitable for effectively managing the extreme model size associated with LLMs. However, deploying LLMs on memristor crossbars faces three major challenges. Firstly, the size of LLMs increases rapidly, already surpassing the capabilities of state-of-the-art memristor chips. Secondly, LLMs often incorporate multi-head attention blocks, which involve non-weight stationary multiplications that traditional memristor crossbars cannot support. Third, while memristor crossbars excel at performing linear operations, they are not capable of executing complex nonlinear operations in LLM such as softmax and layer normalization. To address these challenges, we present a novel architecture for the memristor crossbar that enables the deployment of state-of-the-art LLM on a single chip or package, eliminating the energy and time inefficiencies associated with off-chip communication. Our testing on BERT_Large showed negligible accuracy loss. Compared to traditional memristor crossbars, our architecture achieves enhancements of up to 39X in area overhead and 18X in energy consumption. Compared to modern TPU/GPU systems, our architecture demonstrates at least a 68X reduction in the area-delay product and a significant 69% energy consumption reduction.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な分野において有望な応用が期待されているため、大きな注目を集めている。
それでも、LLMのサイズが大きくなると、トレーニングとデプロイメントの計算要求が大幅に急増する。
Memristorクロスバーは、コンピュータビジョン(CV)モデルにおいて、小さなフットプリントと驚くほど高いエネルギー効率を示す、有望なソリューションとして登場した。
メムリスタは従来のメモリ技術に比べて密度が高いため、LLMに関連する極端なモデルサイズを効果的に管理するのに非常に適している。
しかし、memristor クロスバーに LLM をデプロイすることは、3つの大きな課題に直面している。
第一に、LLMのサイズは急速に増加し、最先端のメムリスタチップの能力を既に上回っている。
第二に、LLMは、従来のメムリスタクロスバーがサポートできない非重み付けの静止乗算を含むマルチヘッドアテンションブロックをしばしば含んでいる。
第三に、メムリスタクロスバーは線形演算を行うのに優れるが、ソフトマックスや層正規化のような複雑な非線形演算は行えない。
これらの課題に対処するため,我々は,単一チップやパッケージに最先端のLCMを配置し,オフチップ通信に伴うエネルギー・時間効率の低下を解消する,メムリスタクロスバーの新しいアーキテクチャを提案する。
BERT_Largeによる検査では, 精度の低下が認められなかった。
従来のメムリスタクロスバーと比較して, オーバヘッドが最大39倍, エネルギー消費が18倍に向上した。
現代のTPU/GPUシステムと比較して、我々のアーキテクチャは、エリア遅延生成物の68倍の削減と69%のエネルギー消費の大幅な削減を実証している。
関連論文リスト
- Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Fine-Tuning and Deploying Large Language Models Over Edges: Issues and Approaches [64.42735183056062]
大規模言語モデル(LLM)は、特殊モデルから多目的基礎モデルへと移行してきた。
LLMは印象的なゼロショット能力を示すが、ローカルデータセットとデプロイメントのための重要なリソースを微調整する必要がある。
論文 参考訳(メタデータ) (2024-08-20T09:42:17Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter [40.616849959987555]
本稿では,大規模言語モデル (LLM) を大容量かつメモリ効率のよいアダプタで微調整する機構を提案する。
これは、LLMのFeed-Forward Networks(FFN)における固有のアクティベーション間隔を活用することで実現される。
我々は、不必要なCPU計算を緩和し、GPUとCPU間の通信量を削減するために、Mixture of Experts(MoE)のようなアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-06-07T14:49:22Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMはより少ないパラメータで高いパフォーマンスを実現することができるが、パラメータサイズが大きいためデプロイは困難である。
本稿では主に,プラグ・アンド・プレイ・エキスパートレベルのスペーシフィケーション技術を導入することで,MoE LLMの展開効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-02-22T18:56:07Z) - FinGPT-HPC: Efficient Pretraining and Finetuning Large Language Models
for Financial Applications with High-Performance Computing [10.47214968497857]
本稿では,低ランク構造を利用した大規模言語モデルの事前学習と微調整を行う高性能手法を提案する。
本手法は精度低下を伴わずに保持できる1.3Xの高速化と2.64Xのモデル圧縮比を実現する。
ファインタニングでは,一般タスクと財務タスクの平均精度が6.3%,24.0%向上した。
論文 参考訳(メタデータ) (2024-02-21T05:03:17Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Efficient LLM Inference on CPUs [8.802223672775844]
大規模言語モデル(LLM)は、幅広いタスクにおいて、顕著なパフォーマンスと大きなポテンシャルを示してきた。
これらのモデルのデプロイは、天文学的なモデルパラメータの量のために困難でした。
LLMのデプロイをより効率的にするための効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-01T13:08:50Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
マルチタスク学習(MTL)は、複数の学習タスクを単一のモデルにカプセル化し、それらのタスクを共同でよりよく学習できるようにする。
現在のMTLレギュレータは、1つのタスクだけを実行するためにさえ、ほぼすべてのモデルを起動する必要がある。
効率的なオンデバイスMTLを実現するためのモデル-アクセラレータ共設計フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-26T15:40:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。