論文の概要: Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
- arxiv url: http://arxiv.org/abs/2410.15990v1
- Date: Mon, 21 Oct 2024 13:20:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:57.719213
- Title: Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
- Title(参考訳): LLMに基づくNLIによるソーシャルメディア証拠分析による法的意思決定支援システムの強化
- Authors: Ram Mohan Rao Kadiyala, Siddartha Pullakhandam, Kanwal Mehreen, Subhasya Tippareddy, Ashay Srivastava,
- Abstract要約: 本稿は,NLLP 2024におけるL-NLI(Lawal Natural Language Inference)の共有タスクのシステム記述とエラー解析について述べる。
このタスクは、レビューと苦情の関連性を示す、関係を関連づけられ、矛盾し、中立的なものに分類することを必要とした。
当システムでは, 勝訴として出現し, 他の項目を著しく上回り, 法的テキスト分析におけるアプローチの有効性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) \citep{hagag2024legallenssharedtask2024}. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
- Abstract(参考訳): 本稿では,NLLP 2024におけるL-NLI(Lop{hagag2024legallenssharedtask2024})とL-NLI(Lop{hagag2024legallenssharedtask2024})の共有タスクのシステム記述とエラー解析について述べる。
このタスクは、これらの関係を、レビューと苦情の関連性を示す、関連する、矛盾した、あるいは中立的なものとして分類することを必要とした。
当システムでは, 勝訴として出現し, 他の項目を著しく上回り, 法的テキスト分析におけるアプローチの有効性を実証した。
テスト対象のモデルとアプローチの長所と短所を詳細に分析し,詳細なエラー解析と今後の改善の提案を行う。
本稿は, 法的文脈における自然言語推論の先進的技術に関する洞察を提供することによって, 法的NLPの分野の発展に寄与することを目的としている。
関連論文リスト
- Legal Evalutions and Challenges of Large Language Models [42.51294752406578]
我々は,OPENAI o1モデルを事例研究として,法律規定の適用における大規模モデルの性能評価に利用した。
我々は、オープンソース、クローズドソース、および法律ドメインのために特別に訓練された法律固有のモデルを含む、最先端のLLMを比較します。
論文 参考訳(メタデータ) (2024-11-15T12:23:12Z) - Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings [0.0]
本研究は,文長の深層学習に基づく予測システムを開発した。
我々のモデルは,CNNとBiLSTMとアテンション機構を組み合わせたもので,R2乗のスコアは0.5893。
論文 参考訳(メタデータ) (2024-10-26T07:07:48Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Leveraging Large Language Models for NLG Evaluation: Advances and Challenges [57.88520765782177]
大規模言語モデル(LLM)は、コヒーレンス、クリエイティビティ、コンテキスト関連など、生成されたコンテンツ品質を評価するための新たな道を開いた。
既存のLCMに基づく評価指標を整理し、これらの手法を理解し比較するための構造化された枠組みを提供する。
本稿では, 偏見, 堅牢性, ドメイン固有性, 統一評価などの未解決課題を議論することによって, 研究者に洞察を提供し, より公平で高度なNLG評価手法を提唱することを目的とする。
論文 参考訳(メタデータ) (2024-01-13T15:59:09Z) - INACIA: Integrating Large Language Models in Brazilian Audit Courts:
Opportunities and Challenges [7.366861473623427]
INACIAは、大規模言語モデル(LLM)をブラジル連邦会計裁判所(TCU)の運営枠組みに統合するために設計された画期的なシステムである。
我々は、事例文書から関連情報を抽出し、その法的妥当性を評価し、司法決定のための提案を定式化するINACIAの可能性を実証する。
論文 参考訳(メタデータ) (2024-01-10T17:13:28Z) - Little Giants: Exploring the Potential of Small LLMs as Evaluation
Metrics in Summarization in the Eval4NLP 2023 Shared Task [53.163534619649866]
本稿では,大規模言語モデルに品質評価の課題を扱えるように,プロンプトベースの手法の有効性を評価することに焦点を当てる。
我々は,標準的なプロンプト,アノテータ命令によって通知されるプロンプト,イノベーティブなチェーン・オブ・シークレットプロンプトなど,様々なプロンプト技術を用いて,系統的な実験を行った。
我々の研究は、これらのアプローチを"小さな"オープンソースモデル(orca_mini_v3_7B)を使って組み合わせることで、競争結果が得られることを示した。
論文 参考訳(メタデータ) (2023-11-01T17:44:35Z) - NeCo@ALQAC 2023: Legal Domain Knowledge Acquisition for Low-Resource
Languages through Data Enrichment [2.441072488254427]
本稿では,ベトナムのテキスト処理タスクに対するNeCo Teamのソリューションを,ALQAC 2023(Automated Legal Question Answering Competition 2023)で紹介する。
法的な文書検索タスクでは,類似度ランキングと深層学習モデルを組み合わせた手法が採用されているが,第2の課題では,異なる質問タイプを扱うための適応的手法が提案されている。
提案手法は, 競争の両課題において, 法的分野における質問応答システムの潜在的メリットと有効性を示す, 卓越した結果を達成している。
論文 参考訳(メタデータ) (2023-09-11T14:43:45Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。