論文の概要: Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning
- arxiv url: http://arxiv.org/abs/2410.16162v2
- Date: Thu, 21 Nov 2024 18:05:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:17:04.960001
- Title: Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning
- Title(参考訳): Sparkle: 視覚言語モデルにおける基本的な空間能力の習得
- Authors: Yihong Tang, Ao Qu, Zhaokai Wang, Dingyi Zhuang, Zhaofeng Wu, Wei Ma, Shenhao Wang, Yunhan Zheng, Zhan Zhao, Jinhua Zhao,
- Abstract要約: 視覚言語モデル (VLM) は、幅広い下流タスクにおいて印象的なパフォーマンスを示している。
評価の結果, 現状のVLMは複合空間推論問題に対して, しばしば不確実かつ不正確な応答を生じさせることが判明した。
そこで本研究では,基本空間能力のみに基づいてモデルをトレーニングすることにより,VLM内の2次元空間推論を効果的に向上する手法を提案する。
- 参考スコア(独自算出の注目度): 19.399925987942204
- License:
- Abstract: Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, most of these tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving, with generalized improvements in visual-spatial tasks. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks. These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights into systematic strategies for improving VLMs' spatial reasoning capabilities.
- Abstract(参考訳): 視覚言語モデル (VLM) は、幅広い下流タスクにおいて印象的なパフォーマンスを示している。
しかし、ナビゲーションや物理的な環境との相互作用に関わるタスクにおいて重要な役割を担っているにもかかわらず、空間推論の習熟度は依然として限られている。
具体的には、これらのタスクの多くは二次元(2次元)環境の中核的な空間的推論能力に依存しており、我々は現状のVLMが、人間が一目で解決できる単純なパスフィニングタスクを含む複合的空間的推論問題に対して、しばしば不確実かつ不正確な応答を生じさせることを示した。
そこで本研究では,基本空間能力のみに基づいてモデルをトレーニングすることにより,VLM内の2次元空間推論を効果的に向上する手法を提案する。
まず,2次元空間推論の重要成分である方向理解,距離推定,局所化を両立させることから始める。
我々の中心的な仮説は、これらの基本空間能力の習得は、空間理解の高度化と組合せ問題解決を必要とする複合空間タスクにおけるモデルの性能を著しく向上させ、視覚空間タスクの汎用的な改善をもたらすことである。
本研究では,これら3つの空間的能力に対して,合成データ生成と目標監督によってVLMを微調整し,各機能のための命令データセットを形成するフレームワークであるSparkleを紹介する。
実験により,Sparkleで微調整したVLMは,基本タスク自体だけでなく,複合的および非分配的空間推論タスクにも応用できることを示す。
これらの知見は,VLMの空間推論能力を向上させるための体系的戦略に関する洞察を提供するとともに,複合空間問題解決の強化における基本空間能力の習得の有効性を裏付けるものである。
関連論文リスト
- Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
オブジェクト間の空間的関係に関する推論は多くの実世界のロボット作業において不可欠である。
我々は、リッチな3次元幾何学的特徴と最先端のオープンボキャブラリオブジェクト検出器を統合する構造的確率的アプローチを導入する。
この手法は、空間推論タスクにおける最先端ビジョン・言語モデル(VLM)のゼロショット性能を評価・比較する。
論文 参考訳(メタデータ) (2024-10-09T19:37:01Z) - REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models [67.55362046790512]
視覚言語モデルには、空間的関係を正しく推論する能力がない。
視覚言語モデルにおける空間忠実度を改善するREVISIONフレームワークを開発した。
本研究の結果から,レンダリングベースのフレームワークは空間認識モデルの開発に有効な手法であることが示唆された。
論文 参考訳(メタデータ) (2024-08-05T04:51:46Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
視覚言語モデル(VLM)は、エキサイティングな言語モデル(LM)のクラスである。
VLMの未調査能力の1つは、視覚空間計画である。
本研究は,これらのモデルにおける空間計画能力を概ね評価するベンチマークを提案する。
論文 参考訳(メタデータ) (2024-07-02T00:24:01Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
空間推論は 生物学的と人工知能の両方において 重要な要素です
本稿では,現在最先端の大規模言語モデル (LLM) の空間的推論能力について包括的に検討する。
論文 参考訳(メタデータ) (2024-06-07T01:06:34Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
VLMの空間知覚と推論能力を高めるために空間領域GPT(SpatialRGPT)を導入する。
推測中、ユーザが指定した領域の提案が提供されると、SpatialRGPTは相対的な方向と距離を正確に知覚できる。
本研究では,空間的推論タスクにおける局所的プロンプトと非局所的プロンプトの双方において,空間的RGPTにより性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-06-03T17:59:06Z) - SpatialPIN: Enhancing Spatial Reasoning Capabilities of Vision-Language Models through Prompting and Interacting 3D Priors [42.85605789984155]
空間的視覚的質問応答(VQA)において、最先端の空間的推論強化VLMを訓練する
本研究では,VLMの空間的推論能力を高めるためのフレームワークであるSpatialPINを提案する。
我々の空間推論型VLMは、空間的VQAの様々な形態でうまく機能し、ピックやスタック、軌道計画といった下流ロボット作業に役立てることができる。
論文 参考訳(メタデータ) (2024-03-18T17:38:29Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
空間的関係についての理解と推論は、視覚質問応答(VQA)とロボット工学の基本的な能力である。
我々は,1000万枚の実画像に対して,最大20億個のVQAサンプルをスケール可能な3次元空間VQAデータ自動生成フレームワークを開発した。
このようなデータに基づいてVLMを訓練することにより、定性的空間的VQAと定量的空間的VQAの両方において、その能力を大幅に向上する。
論文 参考訳(メタデータ) (2024-01-22T18:01:01Z) - Improving Vision-and-Language Reasoning via Spatial Relations Modeling [30.477235227733928]
ビジュアルコモンセンス推論(VCR)は、難しいマルチモーダルタスクである。
提案手法は,より空間的な文脈を維持するために表現を導くことができる。
VCRと他の2つの視覚・言語推論タスクであるVQAとNLVRについて、最先端の結果を得る。
論文 参考訳(メタデータ) (2023-11-09T11:54:55Z) - Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in a
First-person Simulated 3D Environment [73.9469267445146]
高忠実な3Dシミュレーション環境において、AI2Thorのような一対一のオブジェクトインタラクションタスクは、強化学習エージェントに顕著なサンプル効率の課題をもたらす。
補助的なタスクとして注意的オブジェクトモデルを学ぶことで、監督なしに、ゼロからオブジェクトインタラクションタスクを学習できることが示される。
論文 参考訳(メタデータ) (2020-10-28T19:27:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。