論文の概要: Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning
- arxiv url: http://arxiv.org/abs/2410.16162v4
- Date: Wed, 01 Oct 2025 20:43:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:19.48724
- Title: Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning
- Title(参考訳): Sparkle: 視覚言語モデルにおける基本的な空間能力の習得
- Authors: Yihong Tang, Ao Qu, Zhaokai Wang, Dingyi Zhuang, Zhaofeng Wu, Wei Ma, Shenhao Wang, Yunhan Zheng, Zhan Zhao, Jinhua Zhao,
- Abstract要約: 視覚言語モデル(VLM)は多くのタスクでうまく機能するが、しばしば空間的推論では失敗する。
評価の結果, 現状のVLMでは, 複合空間問題に対する不正確な答えが得られていることがわかった。
VLMにおける2次元空間推論は,基本空間能力のみに基づいて訓練することで向上する。
- 参考スコア(独自算出の注目度): 36.588008658084895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision language models (VLMs) perform well on many tasks but often fail at spatial reasoning, which is essential for navigation and interaction with physical environments. Many spatial reasoning tasks depend on fundamental two-dimensional (2D) skills, yet our evaluation shows that state-of-the-art VLMs give implausible or incorrect answers to composite spatial problems, including simple pathfinding tasks that humans solve effortlessly. To address this, we enhance 2D spatial reasoning in VLMs by training them only on basic spatial capabilities. We first disentangle 2D spatial reasoning into three core components: direction comprehension, distance estimation, and localization. We hypothesize that mastering these skills substantially improves performance on complex spatial tasks that require advanced reasoning and combinatorial problem solving, while also generalizing to real-world scenarios. To test this, we introduce Sparkle, a framework that generates synthetic data to provide targeted supervision across these three capabilities and yields an instruction dataset for each. Experiments show that VLMs fine-tuned with \emph{Sparkle} improve not only on basic tasks but also on composite and out-of-distribution real-world spatial reasoning tasks. These results indicate that enhancing basic spatial skills through synthetic generalization effectively advances complex spatial reasoning and offers a systematic strategy for boosting the spatial understanding of VLMs. Source codes of Sparkle are available at https://github.com/YihongT/Sparkle.
- Abstract(参考訳): 視覚言語モデル(VLM)は多くのタスクでうまく機能するが、しばしば空間推論で失敗する。
多くの空間推論タスクは基本的な2次元(2次元)技術に依存しているが、我々の評価では、最先端のVLMは、人間が努力せずに解決する単純なパスフィニングタスクを含む複合空間問題に対して、不確実または不正確な答えを与える。
そこで本研究では,VLMにおける2次元空間推論を,基本空間能力のみに基づいて訓練することによって拡張する。
まず2次元空間推論を,方向理解,距離推定,局所化という3つの中心成分に分解する。
これらのスキルを習得することで、高度な推論や組合せ的問題解決を必要とする複雑な空間的タスクのパフォーマンスが大幅に向上すると同時に、現実のシナリオにも一般化する、という仮説を立てる。
これをテストするために,これら3つの機能を対象とする監視を行うための合成データを生成するフレームワークであるSparkleを導入し,それぞれに命令データセットを生成する。
実験の結果, VLMは基本タスクだけでなく, 実世界の空間的推論タスクにも改善されていることがわかった。
これらの結果は,合成一般化による基本的な空間スキルの向上が,複雑な空間推論を効果的に進め,VLMの空間理解を促進するための体系的戦略を提供することを示している。
Sparkleのソースコードはhttps://github.com/YihongT/Sparkleで公開されている。
関連論文リスト
- Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing [62.447497430479174]
空間における推論への描画は、視覚空間における基本的な描画操作を通じてLVLMを推論できる新しいパラダイムである。
我々のモデルはVILASRと呼ばれ、様々な空間推論ベンチマークで既存の手法より一貫して優れています。
論文 参考訳(メタデータ) (2025-06-11T17:41:50Z) - ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models [47.237216851265316]
視覚言語モデル (VLM) は視覚的内容の理解と推論において顕著な能力を示した。
現在のVLMは、主に自我中心の空間的推論(カメラの観点から)に優れるが、同中心の視点に一般化することができない。
マルチ視点空間位置認識評価に特化して設計された,初の総合的なベンチマークであるViewSpatial-Benchを紹介する。
論文 参考訳(メタデータ) (2025-05-27T17:59:26Z) - SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding [64.15606979785355]
マルチモーダル大規模言語モデル(MLLM)は,質問応答タスクにおいて顕著な成功を収めているが,空間的理解能力は乏しい。
既存のMLLMは3次元空間認識と理解能力を持っているか?
論文 参考訳(メタデータ) (2025-05-22T17:59:03Z) - A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
本稿では,まず空間的推論のコア要素を記述した詳細な分析を行う。
次に、これらのモデルの性能を、合成画像と実画像の両方で評価する。
論文 参考訳(メタデータ) (2025-03-25T14:34:06Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
VLM(Vision-Language Models)は、オブジェクトの識別と記述が優れているが、空間的推論に苦慮している。
人間の視覚のデュアルパスウェイモデルに触発されて,強い物体認識能力にもかかわらず,VLMが空間的タスクに失敗する理由を考察した。
論文 参考訳(メタデータ) (2025-03-21T17:51:14Z) - EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks [24.41705039390567]
EmbodiedVSR (Embodied Visual Space Reasoning) は動的シーングラフ誘導型Chain-of-Thought (CoT)推論を統合する新しいフレームワークである。
本手法はタスク固有の微調整なしでゼロショット空間推論を可能にする。
実験により,我々のフレームワークは,既存のMLLM法よりも精度と推論コヒーレンスにおいて優れていることが示された。
論文 参考訳(メタデータ) (2025-03-14T05:06:07Z) - SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning [42.487500113839666]
視覚言語モデル(VLM)の空間的推論能力を高める新しい手法を提案する。
提案手法は,空間座標二方向アライメントとチェーン・オブ・ザ・スペース・グラウンドリングの2段階からなる。
シミュレーションと実環境設定の両方において,ナビゲーションタスクと操作タスクに挑戦する手法を評価する。
論文 参考訳(メタデータ) (2025-01-17T09:46:27Z) - Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
オブジェクト間の空間的関係に関する推論は多くの実世界のロボット作業において不可欠である。
我々は、リッチな3次元幾何学的特徴と最先端のオープンボキャブラリオブジェクト検出器を統合する構造的確率的アプローチを導入する。
この手法は、空間推論タスクにおける最先端ビジョン・言語モデル(VLM)のゼロショット性能を評価・比較する。
論文 参考訳(メタデータ) (2024-10-09T19:37:01Z) - REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models [67.55362046790512]
視覚言語モデルには、空間的関係を正しく推論する能力がない。
視覚言語モデルにおける空間忠実度を改善するREVISIONフレームワークを開発した。
本研究の結果から,レンダリングベースのフレームワークは空間認識モデルの開発に有効な手法であることが示唆された。
論文 参考訳(メタデータ) (2024-08-05T04:51:46Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
視覚言語モデル(VLM)は、エキサイティングな言語モデル(LM)のクラスである。
VLMの未調査能力の1つは、視覚空間計画である。
本研究は,これらのモデルにおける空間計画能力を概ね評価するベンチマークを提案する。
論文 参考訳(メタデータ) (2024-07-02T00:24:01Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
空間推論は 生物学的と人工知能の両方において 重要な要素です
本稿では,現在最先端の大規模言語モデル (LLM) の空間的推論能力について包括的に検討する。
論文 参考訳(メタデータ) (2024-06-07T01:06:34Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
VLMの空間知覚と推論能力を高めるために空間領域GPT(SpatialRGPT)を導入する。
推測中、ユーザが指定した領域の提案が提供されると、SpatialRGPTは相対的な方向と距離を正確に知覚できる。
本研究では,空間的推論タスクにおける局所的プロンプトと非局所的プロンプトの双方において,空間的RGPTにより性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-06-03T17:59:06Z) - SpatialPIN: Enhancing Spatial Reasoning Capabilities of Vision-Language Models through Prompting and Interacting 3D Priors [42.85605789984155]
空間的視覚的質問応答(VQA)において、最先端の空間的推論強化VLMを訓練する
本研究では,VLMの空間的推論能力を高めるためのフレームワークであるSpatialPINを提案する。
我々の空間推論型VLMは、空間的VQAの様々な形態でうまく機能し、ピックやスタック、軌道計画といった下流ロボット作業に役立てることができる。
論文 参考訳(メタデータ) (2024-03-18T17:38:29Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
空間的関係についての理解と推論は、視覚質問応答(VQA)とロボット工学の基本的な能力である。
我々は,1000万枚の実画像に対して,最大20億個のVQAサンプルをスケール可能な3次元空間VQAデータ自動生成フレームワークを開発した。
このようなデータに基づいてVLMを訓練することにより、定性的空間的VQAと定量的空間的VQAの両方において、その能力を大幅に向上する。
論文 参考訳(メタデータ) (2024-01-22T18:01:01Z) - Improving Vision-and-Language Reasoning via Spatial Relations Modeling [30.477235227733928]
ビジュアルコモンセンス推論(VCR)は、難しいマルチモーダルタスクである。
提案手法は,より空間的な文脈を維持するために表現を導くことができる。
VCRと他の2つの視覚・言語推論タスクであるVQAとNLVRについて、最先端の結果を得る。
論文 参考訳(メタデータ) (2023-11-09T11:54:55Z) - Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in a
First-person Simulated 3D Environment [73.9469267445146]
高忠実な3Dシミュレーション環境において、AI2Thorのような一対一のオブジェクトインタラクションタスクは、強化学習エージェントに顕著なサンプル効率の課題をもたらす。
補助的なタスクとして注意的オブジェクトモデルを学ぶことで、監督なしに、ゼロからオブジェクトインタラクションタスクを学習できることが示される。
論文 参考訳(メタデータ) (2020-10-28T19:27:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。