論文の概要: FlashHack: Reflections on the Usage of a Micro Hackathon as an Assessment Tool in a Machine Learning Course
- arxiv url: http://arxiv.org/abs/2410.16305v1
- Date: Mon, 07 Oct 2024 11:21:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:40:45.285308
- Title: FlashHack: Reflections on the Usage of a Micro Hackathon as an Assessment Tool in a Machine Learning Course
- Title(参考訳): FlashHack: マシンラーニングコースにおける評価ツールとしてのマイクロハッカソンの使用に関する考察
- Authors: R Indra, PD Parthasarathy, Jatin Ambasana, Spruha Satavlekar,
- Abstract要約: グループプロジェクトベースの学習は、CS教育において経験的学習として人気が高まっている。
これらの問題に対処するために、私たちはFlashHackを紹介した。
本結果は,教員の簡易な評価プロセスとともに,学生のエンゲージメントと満足度の向上を示唆するものである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning (ML) course for undergraduates face challenges in assessing student learning and providing practical exposure. Group project-based learning, an increasingly popular form of experiential learning in CS education, encounters certain limitation in participation and non-participation from a few students. Studies also suggest that students find longer programming assignments and project-based assessments distracting and struggle to maintain focus when they coincide with other courses. To tackle these issues, we introduced FlashHack: a monitored, incremental, in-classroom micro Hackathon that combines project-based learning with Hackathon elements. Engaging 229 third year CS undergraduate students in teams of four, FlashHack prompted them to tackle predefined challenges using machine learning techniques within a set timeframe. Assessment criteria emphasized machine learning application, problem-solving, collaboration, and creativity. Our results indicate high student engagement and satisfaction, alongside simplified assessment processes for instructors. This experience report outlines the Hackathon design and implementation, highlights successes and areas for improvement making it feasible for replication by interested computing educators.
- Abstract(参考訳): 大学生のための機械学習(ML)コースは、学生の学習を評価し、実践的な露出を提供する際の課題に直面している。
グループプロジェクトベースの学習は、CS教育における経験的学習としてますます人気が高まっており、一部の学生による参加制限や非参加の制限に直面している。
研究は、学生がプログラミングの課題を長くし、プロジェクトベースの評価が他のコースと一致するときに焦点を逸脱し、集中を維持するのに苦労していることも示唆している。
これらの問題に対処するために、私たちはFlashHackを紹介した。FlashHackは、プロジェクトベースの学習とハッカソン要素を組み合わせた、モニター付き、インクリメンタルなクラス内マイクロハッカソンです。
FlashHackは4人のチームで229人の3年生の学生を擁し、設定された時間枠内で機械学習技術を使用して事前に定義された課題に取り組むように促した。
評価基準は、機械学習アプリケーション、問題解決、コラボレーション、創造性を強調した。
本結果は,教員の簡易な評価プロセスとともに,学生のエンゲージメントと満足度の向上を示唆するものである。
この経験レポートはハッカソンの設計と実装の概要を概説し、興味あるコンピュータ教育者による複製を可能にするために成功と改善の領域を強調している。
関連論文リスト
- Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
我々は、未学習アルゴリズムの有効性を頑健に評価するために設計された新しいVLMアンラーニングベンチマークであるFacial Identity Unlearning Benchmark (FIUBench)を紹介する。
情報ソースとその露出レベルを正確に制御する2段階評価パイプラインを適用した。
FIUBench 内の 4 つのベースライン VLM アンラーニングアルゴリズムの評価により,すべての手法がアンラーニング性能に制限されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-05T23:26:10Z) - A Problem-Based Learning Approach to Teaching Design in CS1 [0.9786690381850356]
デザインスキルは、ソフトウェアプロフェッショナルにとってコアコンピテンシーとしてますます認識されている。
新しいデザイナーは、可能性に圧倒されるのを防ぐために、構造化されたプロセスを必要とします。
初等大学200人の学生にチームデザインプロジェクトコースを指導した経験を提示する。
論文 参考訳(メタデータ) (2024-10-15T23:36:08Z) - WIP: A Unit Testing Framework for Self-Guided Personalized Online Robotics Learning [3.613641107321095]
本稿では,授業ワークフローに統合しながら,単体テストのためのシステムを構築することに焦点を当てる。
フレームワークのパーソナライズされた学生中心のアプローチに合わせて、この方法は学生がプログラミング作業を簡単に修正し、デバッグできるようにする。
単体テストを含むコースワークフローは、学習環境を強化し、学生が自己指導型でロボットをプログラムする方法を学習できるように、よりインタラクティブにする。
論文 参考訳(メタデータ) (2024-05-18T00:56:46Z) - A Neuroscience Approach regarding Student Engagement in the Classes of
Microcontrollers during the COVID19 Pandemic [0.0]
ArduinoとRaspberry Piボードは、オンラインシミュレーション環境を使用してマイクロコントローラのコースで研究されている。
Emotiv Insightヘッドセットは、マイクロコントローラコースの理論的および実践的な時間に教授が使用する。
授業で使用されるアプローチは、質問ベースの学習、ゲームベースの学習、パーソナライズされた学習である。
論文 参考訳(メタデータ) (2021-11-15T16:41:29Z) - Experience of Teaching Data Visualization using Project-based Learning [0.3437656066916039]
学生が目標を達成するために必要な場合、どのインプットが提供されたかを示す。
学生が目標を達成するのに役立つツールについて議論し、比較する。
論文 参考訳(メタデータ) (2021-10-21T16:47:34Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z) - Motivating Learners in Multi-Orchestrator Mobile Edge Learning: A
Stackelberg Game Approach [54.28419430315478]
Mobile Edge Learningは、異種エッジデバイス上で機械学習モデルの分散トレーニングを可能にする。
MELでは、十分なトレーニングデータやコンピューティングリソースを入手することなく、トレーニング性能が低下する。
そこで我々は2ラウンドのStackelbergゲームとしてオーケストレータとラーナーの相互作用を定式化するインセンティブ機構を提案する。
論文 参考訳(メタデータ) (2021-09-25T17:27:48Z) - Deeper Learning By Doing: Integrating Hands-On Research Projects Into a
Machine Learning Course [3.553493344868414]
本稿では,プロジェクトベースの機械学習コースの組織について述べる。
本コースにプロジェクトベース学習を取り入れることに加えて,実世界の課題に対応するプロジェクトベース学習コンポーネントの開発も目指している。
論文 参考訳(メタデータ) (2021-07-28T23:41:27Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
パーソナライゼーションとアクティブラーニングは、学習の成功の鍵となる側面です。
私たちは2つの人気のあるオンライン学習プラットフォームの学習結果の比較正面調査を実施します。
論文 参考訳(メタデータ) (2021-04-15T20:40:24Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
強化学習(Reinforcement Learning, RL)は、エージェントが限られた環境フィードバックしか持たないシーケンシャルな意思決定タスクに対処するための一般的なパラダイムである。
本稿では、RLにおけるカリキュラム学習(CL)の枠組みを提案し、既存のCLメソッドを仮定、能力、目標の観点から調査・分類する。
論文 参考訳(メタデータ) (2020-03-10T20:41:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。