LLMScan: Causal Scan for LLM Misbehavior Detection
- URL: http://arxiv.org/abs/2410.16638v2
- Date: Wed, 23 Oct 2024 03:41:49 GMT
- Title: LLMScan: Causal Scan for LLM Misbehavior Detection
- Authors: Mengdi Zhang, Kai Kiat Goh, Peixin Zhang, Jun Sun,
- Abstract summary: Large Language Models (LLMs) generate untruthful, biased and harmful responses.
This work introduces LLMScan, an innovative monitoring technique based on causality analysis.
- Score: 6.001414661477911
- License:
- Abstract: Despite the success of Large Language Models (LLMs) across various fields, their potential to generate untruthful, biased and harmful responses poses significant risks, particularly in critical applications. This highlights the urgent need for systematic methods to detect and prevent such misbehavior. While existing approaches target specific issues such as harmful responses, this work introduces LLMScan, an innovative LLM monitoring technique based on causality analysis, offering a comprehensive solution. LLMScan systematically monitors the inner workings of an LLM through the lens of causal inference, operating on the premise that the LLM's `brain' behaves differently when misbehaving. By analyzing the causal contributions of the LLM's input tokens and transformer layers, LLMScan effectively detects misbehavior. Extensive experiments across various tasks and models reveal clear distinctions in the causal distributions between normal behavior and misbehavior, enabling the development of accurate, lightweight detectors for a variety of misbehavior detection tasks.
Related papers
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.
Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-AI collaboration.
To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks [12.893445918647842]
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns.
This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks.
arXiv Detail & Related papers (2024-09-12T14:42:08Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection [34.40206965758026]
Time series anomaly detection (TSAD) plays a crucial role in various industries by identifying atypical patterns that deviate from standard trends.
Traditional TSAD models, which often rely on deep learning, require extensive training data and operate as black boxes.
We propose LLMAD, a novel TSAD method that employs Large Language Models (LLMs) to deliver accurate and interpretable TSAD results.
arXiv Detail & Related papers (2024-05-24T09:07:02Z) - Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent
Detection [34.135738700682055]
This paper conducts a comprehensive evaluation of large language models (LLMs) represented by ChatGPT.
We find that LLMs exhibit strong zero-shot and few-shot capabilities, but is still at a disadvantage compared to models fine-tuned with full resource.
arXiv Detail & Related papers (2024-02-27T07:02:10Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.