論文の概要: A class of modular and flexible covariate-based covariance functions for nonstationary spatial modeling
- arxiv url: http://arxiv.org/abs/2410.16716v1
- Date: Tue, 22 Oct 2024 05:53:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:45.068625
- Title: A class of modular and flexible covariate-based covariance functions for nonstationary spatial modeling
- Title(参考訳): 非定常空間モデリングのためのモジュラーおよびフレキシブル共変量に基づく共分散関数のクラス
- Authors: Federico Blasi, Reinhard Furrer,
- Abstract要約: 固定された観測可能な空間情報に依存する共分散関数のクラスを示す。
このモデルは、辺標準偏差、幾何学的異方性、滑らかさなど、異なる非定常性源に対する別々の構造を可能にする。
シミュレーション研究を通じて提示されたモデルの性能解析とスイスの降水データへの適用について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The assumptions of stationarity and isotropy often stated over spatial processes have not aged well during the last two decades, partly explained by the combination of computational developments and the increasing availability of high-resolution spatial data. While a plethora of approaches have been developed to relax these assumptions, it is often a costly tradeoff between flexibility and a diversity of computational challenges. In this paper, we present a class of covariance functions that relies on fixed, observable spatial information that provides a convenient tradeoff while offering an extra layer of numerical and visual representation of the flexible spatial dependencies. This model allows for separate parametric structures for different sources of nonstationarity, such as marginal standard deviation, geometric anisotropy, and smoothness. It simplifies to a Mat\'ern covariance function in its basic form and is adaptable for large datasets, enhancing flexibility and computational efficiency. We analyze the capabilities of the presented model through simulation studies and an application to Swiss precipitation data.
- Abstract(参考訳): 空間過程における定常性や等方性の仮定は、計算の発展と高分解能空間データの利用率の増大によって部分的に説明され、過去20年間は十分に経っていない。
これらの仮定を緩和するために多くのアプローチが開発されているが、柔軟性と計算課題の多様性の間のコストのかかるトレードオフであることが多い。
本稿では, フレキシブルな空間依存の数値的, 視覚的表現を付加しながら, 便利なトレードオフを提供する, 固定された観測可能な空間情報に依存する共分散関数のクラスを提案する。
このモデルは、辺標準偏差、幾何学的異方性、滑らかさなど、異なる非定常性源に対するパラメトリック構造を分離することができる。
基本形式のMat\'ern共分散関数に単純化され、大きなデータセットに適応し、柔軟性と計算効率を向上させる。
シミュレーション研究を通じて提示されたモデルの性能解析とスイスの降水データへの適用について述べる。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
GAM(Generalized Additive Models)は、変数とターゲットの間の非線形関係をキャプチャできるが、複雑な特徴相互作用をキャプチャすることはできない。
本稿では,GAMのフレキシブルな形状関数と,数学的表現に見られる複雑な特徴相互作用を融合させる形状表現算術(SHARE)を提案する。
また、標準制約を超えた表現の透明性を保証するSHAREを構築するための一連のルールを設計する。
論文 参考訳(メタデータ) (2024-04-15T13:44:01Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
高次元データセットの共分散学習を容易にするために,クレーマー-ウォルド距離正規化を導入し,クレーマー-ウォルド距離正規化法を提案する。
また、フレキシブルな事前モデリングを可能にする2段階学習手法を導入し、集約後と事前分布のアライメントを改善する。
論文 参考訳(メタデータ) (2023-10-25T05:24:23Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Efficient Large-scale Nonstationary Spatial Covariance Function
Estimation Using Convolutional Neural Networks [3.5455896230714194]
非定常データからサブリージョンを導出するためにConvNetsを使用します。
定常場に類似した振る舞いを示す部分領域を同定するために選択機構を用いる。
提案手法の性能を大規模に評価する。
論文 参考訳(メタデータ) (2023-06-20T12:17:46Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Mitigation of Spatial Nonstationarity with Vision Transformers [1.690637178959708]
深層学習モデル予測性能に対する2種類の測地的空間非定常性の影響を示す。
本稿では,自己注意モデル(ビジョン・トランスフォーマー)を用いて,そのような影響の緩和を提案する。
論文 参考訳(メタデータ) (2022-12-09T02:16:05Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Factorized Fusion Shrinkage for Dynamic Relational Data [16.531262817315696]
本稿では,すべての分解因子がグループ単位の核融合構造に対して動的に縮小される因子化核融合収縮モデルについて考察する。
提案手法は、推定された動的潜在因子の比較とクラスタリングにおいて、多くの好ましい特性を享受する。
本稿では、最適後部推論と計算スケーラビリティのバランスをとる構造的平均場変動推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-30T21:03:40Z) - Approximate Latent Force Model Inference [1.3927943269211591]
潜在力モデルは、動的システムにおける推論のための純粋にデータ駆動ツールの解釈可能な代替手段を提供する。
ニューラルネットワークのアプローチは、モデルを数千のインスタンスにスケールし、高速で分散的な計算を可能にします。
論文 参考訳(メタデータ) (2021-09-24T09:55:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。