論文の概要: CLAP: Concave Linear APproximation for Quadratic Graph Matching
- arxiv url: http://arxiv.org/abs/2410.17101v1
- Date: Tue, 22 Oct 2024 15:28:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:40.408983
- Title: CLAP: Concave Linear APproximation for Quadratic Graph Matching
- Title(参考訳): CLAP: 擬似グラフマッチングのための凹凸線形近似
- Authors: Yongqing Liang, Huijun Han, Xin Li,
- Abstract要約: 線形モデルを導入し、グラフマッチングのための新しい近似行列を設計する。
次に、元のQAPを構造制約の凹凸となる線形モデルに変換する。
このモデルはシンクホーン最適輸送アルゴリズムを用いて解くことができる。
- 参考スコア(独自算出の注目度): 5.417323487240968
- License:
- Abstract: Solving point-wise feature correspondence in visual data is a fundamental problem in computer vision. A powerful model that addresses this challenge is to formulate it as graph matching, which entails solving a Quadratic Assignment Problem (QAP) with node-wise and edge-wise constraints. However, solving such a QAP can be both expensive and difficult due to numerous local extreme points. In this work, we introduce a novel linear model and solver designed to accelerate the computation of graph matching. Specifically, we employ a positive semi-definite matrix approximation to establish the structural attribute constraint.We then transform the original QAP into a linear model that is concave for maximization. This model can subsequently be solved using the Sinkhorn optimal transport algorithm, known for its enhanced efficiency and numerical stability compared to existing approaches. Experimental results on the widely used benchmark PascalVOC showcase that our algorithm achieves state-of-the-art performance with significantly improved efficiency. Source code: https://github.com/xmlyqing00/clap
- Abstract(参考訳): 視覚データにおけるポイントワイド特徴対応の解決は、コンピュータビジョンの基本的な問題である。
この課題に対処する強力なモデルはグラフマッチングとして定式化することであり、これはノードワイドおよびエッジワイドの制約で準ドラマティック割り当て問題(QAP)を解決することを必要とする。
しかし、そのようなQAPを解くことは、多くの局所的な極端点のために高価かつ困難である。
本研究では,グラフマッチングの高速化を目的とした線形モデルと解法を提案する。
具体的には、構造的属性制約を確立するために正の半定値行列近似を用い、その後、元のQAPを最大化のための凹凸となる線形モデルに変換する。
このモデルは、既存の手法と比較して効率と数値安定性が向上していることで知られているシンクホーン最適輸送アルゴリズムを用いて解決することができる。
広く使われているベンチマークPascalVOCの実験結果から,本アルゴリズムは最先端性能を実現し,効率を大幅に向上することを示した。
ソースコード:https://github.com/xmlyqing00/clap
関連論文リスト
- Convergence Guarantees for the DeepWalk Embedding on Block Models [9.898607871253775]
ブロックモデル(SBM)から得られたグラフ上でDeepWalkアルゴリズムの使い方を示す。
単純化されているにもかかわらず、SBMは大きなグラフ上のアルゴリズムを解析するための古典的なモデルであることが証明されている。
論文 参考訳(メタデータ) (2024-10-26T18:35:11Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Efficient Graph Laplacian Estimation by Proximal Newton [12.05527862797306]
グラフ学習問題は、精度行列の最大極大推定(MLE)として定式化することができる。
いくつかのアルゴリズム的特徴を利用した効率的な解法を得るための2次手法を開発した。
論文 参考訳(メタデータ) (2023-02-13T15:13:22Z) - Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization [35.66014845211251]
非剛性登録は、ターゲット形状と整合する非剛性な方法でソース形状を変形させるが、コンピュータビジョンにおける古典的な問題である。
既存のメソッドは通常$ell_p$型ロバストノルムを使用してアライメントエラーを測定し、変形の滑らかさを規則化する。
本稿では、アライメントと正規化のためのグローバルなスムーズなロバストノルムに基づく、ロバストな非剛体登録のための定式化を提案する。
論文 参考訳(メタデータ) (2022-06-07T16:00:33Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
制約付き非線形最適化問題のオンライン統計的推測を考察する。
これらの問題を解決するために、逐次二次計画法(StoSQP)を適用する。
論文 参考訳(メタデータ) (2022-05-27T00:34:03Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
本稿では,データから学ぶための凸解析フレームワークを提案する。
三角凸分解はその上部に対応する変換によって保証されることを示す。
論文 参考訳(メタデータ) (2021-09-17T17:46:12Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
多くの応用において、部分重なり合う点集合が対応するRPMアルゴリズムに不変であるようなアルゴリズムが必要である。
まず、目的が立方体有界関数であることを示し、次に、三線型および双線型単相変換の凸エンベロープを用いて、その下界を導出する。
次に、変換変数上の分岐のみを効率よく実行するブランチ・アンド・バウンド(BnB)アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-01-19T04:24:23Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
この研究は、人気のあるDual Block-Coordinate Ascent原則に基づく新しいMAP-solverを導入している。
驚いたことに、性能の低い解法に小さな変更を加えることで、既存の解法を大きなマージンで大幅に上回る新しい解法MPLP++を導出します。
論文 参考訳(メタデータ) (2020-04-16T16:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。