論文の概要: Solving the Independent Domination Problem by Quantum Approximate Optimization Algorithm
- arxiv url: http://arxiv.org/abs/2410.17227v1
- Date: Tue, 22 Oct 2024 17:49:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:25.974904
- Title: Solving the Independent Domination Problem by Quantum Approximate Optimization Algorithm
- Title(参考訳): 量子近似最適化アルゴリズムによる独立支配問題の解法
- Authors: Haoqian Pan, Changhong Lu,
- Abstract要約: 独立支配問題(IDP)は、様々な現実のシナリオにおいて実践的な意味を持つ。
IDPの既存の古典的アルゴリズムは計算の複雑さに悩まされている。
本稿では、IDPに対処するための量子近似最適化(QAOA)に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.5919433278490629
- License:
- Abstract: In the wake of quantum computing advancements and quantum algorithmic progress, quantum algorithms are increasingly being employed to address a myriad of combinatorial optimization problems. Among these, the Independent Domination Problem (IDP), a derivative of the Domination Problem, has practical implications in various real-world scenarios. Despite this, existing classical algorithms for IDP are plagued by high computational complexity, and quantum algorithms have yet to tackle this challenge. This paper introduces a Quantum Approximate Optimization Algorithm (QAOA)-based approach to address the IDP. Utilizing IBM's qasm_simulator, we have demonstrated the efficacy of QAOA in solving IDP under specific parameter settings, with a computational complexity that surpasses that of classical methods. Our findings offer a novel avenue for the resolution of IDP.
- Abstract(参考訳): 量子コンピューティングの進歩と量子アルゴリズムの進歩により、多くの組合せ最適化問題に対処するために量子アルゴリズムがますます使われている。
これらのうち、独立支配問題(IDP)は、様々な現実のシナリオにおいて実践的な意味を持つ。
それにもかかわらず、IDPの既存の古典的アルゴリズムは高い計算複雑性に悩まされており、量子アルゴリズムはこの課題にまだ取り組んでいない。
本稿では、IDPに対処するための量子近似最適化アルゴリズム(QAOA)に基づくアプローチを提案する。
IBM の qasm_simulator を用いて,古典的手法を超越した計算複雑性を持つパラメータ設定条件下で IDP を解く上で,QAOA の有効性を実証した。
以上の結果から,IDPの解決に向けた新たな道筋が示唆された。
関連論文リスト
- Application of Quantum Approximate Optimization Algorithm in Solving the Total Domination Problem [0.5266869303483376]
総合支配問題(TDP)はこの分野における古典的かつ批判的な事例である。
量子コンピューティングの最近の進歩は、最適化問題に量子アルゴリズムを適用することに大きな研究をもたらした。
本稿では,量子近似最適化アルゴリズム(QAOA)の先駆的応用について述べる。
論文 参考訳(メタデータ) (2024-11-01T05:05:14Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
本研究は、4つの異なる最適化問題にまたがっていくつかの非フォールト耐性量子コンピューティングアルゴリズムを体系的にベンチマークする。
我々のベンチマークには、変分量子固有解法など、ノイズの多い中間スケール量子(NISQ)アルゴリズムが含まれている。
以上の結果から,FTQC以外のアルゴリズムは全ての問題に対して最適に動作しないことが明らかとなり,アルゴリズム戦略の調整の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-10-30T08:41:29Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
変分アルゴリズム (VQA) は, NISQシステムの実用化に向けた最有力候補の1つである。
本稿では,VQAの現状と最近の発展を考察し,近似最適化への適用性を強調した。
10ノードと20ノードのグラフ上でMaxCut問題を解くために,深さの異なるQAOA回路を実装した。
論文 参考訳(メタデータ) (2024-07-08T22:02:39Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
変分量子アルゴリズムは、デジタル量子コンピュータを用いた最適化問題の解法として興味深い可能性を提供する。
しかし、そのようなアルゴリズムにおける達成可能な性能と量子相関の役割は未だ不明である。
我々は、IBM量子チップと同様に、システマティックな手順で高度に圧縮された状態が生成されるかを数値的に示す。
論文 参考訳(メタデータ) (2022-05-20T18:00:06Z) - Implementable Hybrid Quantum Ant Colony Optimization Algorithm [0.0]
NP-hard問題に対する近似解を生成するための新しいハイブリッド量子アルゴリズムを提案する。
我々は,近距離量子コンピュータで真に実装できる改良されたアルゴリズムを開発した。
ノイズレス量子回路をシミュレートしたベンチマークと、IBM量子コンピュータを用いた実験により、アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T13:50:51Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。