論文の概要: Application of Quantum Approximate Optimization Algorithm in Solving the Total Domination Problem
- arxiv url: http://arxiv.org/abs/2411.00364v1
- Date: Fri, 01 Nov 2024 05:05:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:39:09.420645
- Title: Application of Quantum Approximate Optimization Algorithm in Solving the Total Domination Problem
- Title(参考訳): 総支配問題の解法における量子近似最適化アルゴリズムの適用
- Authors: Haoqian Pan, Shiyue Wang, Changhong Lu,
- Abstract要約: 総合支配問題(TDP)はこの分野における古典的かつ批判的な事例である。
量子コンピューティングの最近の進歩は、最適化問題に量子アルゴリズムを適用することに大きな研究をもたらした。
本稿では,量子近似最適化アルゴリズム(QAOA)の先駆的応用について述べる。
- 参考スコア(独自算出の注目度): 0.5266869303483376
- License:
- Abstract: Recent advancements in quantum computing have led to significant research into applying quantum algorithms to combinatorial optimization problems. Among these challenges, the Total Domination Problem (TDP) is particularly noteworthy, representing a classic and critical example in the field. Since the last century, research efforts have focused on establishing its NP-completeness and developing algorithms for its resolution, which have been fundamental to combinatorial mathematics. Despite this rich history, the application of quantum algorithms to the TDP remains largely unexplored. In this study, we present a pioneering application of the Quantum Approximate Optimization Algorithm (QAOA) to tackle the TDP, evaluating its efficacy across a diverse array of parameters. Our experimental findings indicate that QAOA is effective in addressing the TDP; under most parameter combinations, it successfully computes the correct total dominating set (TDS). However, the algorithm's performance in identifying the optimal TDS is contingent upon the specific parameter choices, revealing a significant bias in the distribution of effective parameter points. This research contributes valuable insights into the potential of quantum algorithms for addressing the TDP and lays the groundwork for future investigations in this area.
- Abstract(参考訳): 量子コンピューティングの最近の進歩は、組合せ最適化問題に量子アルゴリズムを適用することに大きな研究をもたらした。
これらの課題の中で、トータル・ドミネーション問題(TDP)は特に注目すべきであり、この分野における古典的で批判的な例である。
前世紀以降、研究はNP完全性を確立することに集中し、その解法のためのアルゴリズムを開発してきた。
この豊富な歴史にもかかわらず、TDPへの量子アルゴリズムの応用はいまだにほとんど解明されていない。
本研究では,量子近似最適化アルゴリズム(QAOA)の先駆的応用として,TDPに取り組み,その有効性を様々なパラメータで評価する。
実験の結果,QAOAはTDPの処理に有効であることが示唆され,ほとんどのパラメータの組み合わせでは,正しい総支配集合(TDS)の計算に成功している。
しかし、最適なTDSを特定する際のアルゴリズムの性能は、パラメータの選択によって決定され、有効パラメータ点の分布に有意なバイアスが生じる。
本研究は、TDPに対処するための量子アルゴリズムの可能性に関する貴重な知見を提供し、この分野における今後の研究の基盤となる。
関連論文リスト
- Solving the Independent Domination Problem by Quantum Approximate Optimization Algorithm [0.5919433278490629]
独立支配問題(IDP)は、様々な現実のシナリオにおいて実践的な意味を持つ。
IDPの既存の古典的アルゴリズムは計算の複雑さに悩まされている。
本稿では、IDPに対処するための量子近似最適化(QAOA)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-22T17:49:00Z) - Quantum evolutionary algorithm for TSP combinatorial optimisation problem [0.0]
本稿では、量子遺伝的アルゴリズム(QGA)を用いて、旅行セールスマン問題(TSP)と呼ばれる新しい問題を解決する方法を実装する。
我々は、この新しいアプローチがいかにうまく機能するかを、古典的遺伝的アルゴリズム(CGA)として知られる従来の手法と比較した。
論文 参考訳(メタデータ) (2024-09-20T08:27:42Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
繰り返し改善戦略において量子アニーリングを利用するために,整数最適化問題のイジング定式化を提案する。
基底状態と候補解との重なりがしきい値を超えた場合, 完全に連結されたフェロポッツモデルに対して一階相転移を回避できることを解析的に示す。
論文 参考訳(メタデータ) (2022-11-08T02:12:49Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Portfolio Optimization with Digitized-Counterdiabatic Quantum Algorithms [1.1682745573995112]
我々は、NISQ時代の産業応用における量子優位性にアプローチするための先進パラダイムとして、デジタルカウンテルダイアバティック量子コンピューティングを考察する。
本分析は, 近似反断熱法を導入すると, 得られたディジタル量子アルゴリズムの成功確率を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T18:55:02Z) - Hybrid Quantum Computing -- Tabu Search Algorithm for Partitioning
Problems: preliminary study on the Traveling Salesman Problem [0.8434687648198277]
本稿では,ハイブリッド量子コンピューティング - Tabu Search Algorithm と呼ばれる新しい解法を提案する。
提案手法の主な運用柱は、量子資源へのアクセスの制御の強化と、収益性のないアクセスの大幅な削減である。
論文 参考訳(メタデータ) (2020-12-09T11:21:50Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。