Floquetifying stabiliser codes with distance-preserving rewrites
- URL: http://arxiv.org/abs/2410.17240v1
- Date: Tue, 22 Oct 2024 17:56:26 GMT
- Title: Floquetifying stabiliser codes with distance-preserving rewrites
- Authors: Benjamin Rodatz, Boldizsár Poór, Aleks Kissinger,
- Abstract summary: ZX calculus is a graphical language for representing and rewriting quantum circuits.
Applying rewrites to a circuit that implements an error-correcting code can change its distance.
We define the notion of distance-preserving rewrites that enable the transformation of error-correcting codes without changing their distance.
- Score: 0.0
- License:
- Abstract: The ZX calculus is a graphical language for representing and rewriting quantum circuits. While its graphical rewrite rules preserve semantics, they may not preserve other features. For example, applying rewrites to a circuit that implements an error-correcting code can change its distance. Here, we define the notion of distance-preserving rewrites that enables the transformation of error-correcting codes without changing their distance. Using these rewrites, we propose an algorithm that transforms a high-weight Pauli measurement into an equivalent quantum circuit with only single- and two-qubit operations. Since we only use distance-preserving rewrites, we guarantee that errors in the low-weight implementation do not propagate to create multiple data errors. Going further, we generalise the Floquetification procedure of [arXiv:2308.15489] to arbitrary stabiliser codes. Given a stabiliser code, we synthesise a new quantum error-correcting code which encodes the same number of qubits with at least the same distance. The number of additional qubits this method requires is linearly dependent on the weight or the largest Pauli measurement. This creates a tradeoff between easily implementable low-weight Pauli measurements at the cost of additional physical qubits.
Related papers
- Hardware-efficient quantum error correction using concatenated bosonic qubits [41.6475446744259]
Quantum computers will need to incorporate quantum error correction, where a logical qubit is redundantly encoded in many noisy physical qubits.
Here, using a microfabricated superconducting quantum circuit, we realize a logical qubit memory formed from the concatenation of encoded bosonic cat qubits.
We study the performance and scaling of the logical qubit memory, finding that the phase-flip correcting repetition code operates below threshold.
arXiv Detail & Related papers (2024-09-19T18:00:53Z) - Creating entangled logical qubits in the heavy-hex lattice with topological codes [0.0]
In this work we show how this bug can be turned into a feature.
We demonstrate entanglement between logical qubits with code distance up to $d = 4$.
We verify the violation of Bell's inequality for both the $d=2$ case with post selection featuring a fidelity of $94%$.
arXiv Detail & Related papers (2024-04-24T17:02:35Z) - A family of permutationally invariant quantum codes [54.835469342984354]
We show that codes in the new family correct quantum deletion errors as well as spontaneous decay errors.
Our construction contains some of the previously known permutationally invariant quantum codes.
For small $t$, these conditions can be used to construct new examples of codes by computer.
arXiv Detail & Related papers (2023-10-09T02:37:23Z) - Quantum Lego Expansion Pack: Enumerators from Tensor Networks [1.489619600985197]
We provide the first tensor network method for computing quantum weight enumerators in the most general form.
For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance.
We show that these enumerators can be used to compute logical error rates exactly and thus construct decoders for any i.i.d. single qubit or qudit error channels.
arXiv Detail & Related papers (2023-08-09T18:00:02Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Noisy decoding by shallow circuits with parities: classical and quantum [0.0]
We show that any classical circuit can correctly recover only a vanishingly small fraction of messages, if the codewords are sent over a noisy channel with positive error rate.
We give a simple quantum circuit that correctly decodes the Hadamard code with probability $Omega(varepsilon2)$ even if a $(1/2 - varepsilon)$-fraction of a codeword is adversarially corrupted.
arXiv Detail & Related papers (2023-02-06T15:37:32Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Pauli channels can be estimated from syndrome measurements in quantum
error correction [0.7264378254137809]
We show that a stabilizer code can be used to estimate Pauli channels with correlations across a number of qubits given by the pure distance.
It also allows for measurement errors within the framework of quantum data-syndrome codes.
It is our hope that this work opens up interesting applications, such as the online adaptation of a decoder to time-varying noise.
arXiv Detail & Related papers (2021-07-29T18:01:10Z) - Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding [45.66971406567023]
bits-back suffers from an increase in the equal to the KL divergence between the approximate posterior and the true posterior.
We show how to remove this gapally by deriving bits-back coding algorithms from tighter variational bounds.
arXiv Detail & Related papers (2021-02-22T14:58:01Z) - Trade-offs on number and phase shift resilience in bosonic quantum codes [10.66048003460524]
One quantum error correction solution is to encode quantum information into one or more bosonic modes.
We show that by using arbitrarily many modes, $g$-gapped multi-mode codes can yield good approximate quantum error correction codes.
arXiv Detail & Related papers (2020-08-28T10:44:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.