論文の概要: SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes
- arxiv url: http://arxiv.org/abs/2410.17249v1
- Date: Tue, 22 Oct 2024 17:59:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:36.868495
- Title: SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes
- Title(参考訳): SpectroMotion: 特異シーンの動的3次元再構成
- Authors: Cheng-De Fan, Chen-Wei Chang, Yi-Ruei Liu, Jie-Ying Lee, Jiun-Long Huang, Yu-Chee Tseng, Yu-Lun Liu,
- Abstract要約: 本稿では,3次元ガウススティング(3DGS)と物理ベースレンダリング(PBR)と変形場を組み合わせた新しいアプローチであるSpectroMotionを提案する。
- 参考スコア(独自算出の注目度): 7.590932716513324
- License:
- Abstract: We present SpectroMotion, a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes. Previous methods extending 3DGS to model dynamic scenes have struggled to accurately represent specular surfaces. Our method addresses this limitation by introducing a residual correction technique for accurate surface normal computation during deformation, complemented by a deformable environment map that adapts to time-varying lighting conditions. We implement a coarse-to-fine training strategy that significantly enhances both scene geometry and specular color prediction. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing dynamic specular objects and that it is the only existing 3DGS method capable of synthesizing photorealistic real-world dynamic specular scenes, outperforming state-of-the-art methods in rendering complex, dynamic, and specular scenes.
- Abstract(参考訳): 本稿では,3次元ガウススティング(3DGS)と物理ベースレンダリング(PBR)と変形場を組み合わせた新しいアプローチであるSpectroMotionを提案する。
3DGSを動的シーンのモデル化に拡張する以前の方法は、鏡面を正確に表現するのに苦労してきた。
本手法は, 経時変化した照明条件に適応する変形可能な環境マップを用いて, 変形中の表面正規計算を高精度に行うための残差補正手法を導入することで, この制限に対処する。
我々は、シーン幾何学と特定色予測の両方を大幅に強化する粗大なトレーニング戦略を実装した。
本モデルでは, ダイナミック・スペキュラ・オブジェクトを含むシーンのビュー合成において, 先行した手法よりも優れており, 複雑な, ダイナミック, スペキュラ・シーンのレンダリングにおいて, フォトリアリスティック・リアル・ワールド・ダイナミック・スペキュラ・シーンを合成することのできる3DGS法が唯一存在することを実証する。
関連論文リスト
- DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
動的オブジェクトの表現を大幅に強化するフレームワークであるDENSERを提案する。
提案手法は最先端の手法を広いマージンで大幅に上回る。
論文 参考訳(メタデータ) (2024-09-16T07:11:58Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
オブジェクト中心学習が可能な動的シーンのための3次元生成モデルDynaVol-Sを提案する。
ボキセル化は、個々の空間的位置において、物体ごとの占有確率を推定する。
提案手法は2次元セマンティックな特徴を統合して3次元セマンティック・グリッドを作成し,複数の不整合ボクセル・グリッドを通してシーンを表現する。
論文 参考訳(メタデータ) (2024-07-30T15:33:58Z) - Modeling Ambient Scene Dynamics for Free-view Synthesis [31.233859111566613]
モノクルキャプチャから周囲のシーンを動的に自由視点で合成する手法を提案する。
本手法は, 複雑な静的シーンを忠実に再構築できる3次元ガウス散乱(3DGS)の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2024-06-13T17:59:11Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z) - SWinGS: Sliding Windows for Dynamic 3D Gaussian Splatting [7.553079256251747]
我々は動的シーンを再構築するために3次元ガウススプラッティングを拡張した。
我々は、競争力のある定量的性能を持つ一般的な動的シーンの高品質なレンダリングを作成する。
我々の手法は動的インタラクティブなビューアでリアルタイムで見ることができる。
論文 参考訳(メタデータ) (2023-12-20T03:54:03Z) - SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes [59.23385953161328]
動的シーンのための新しいビュー合成は、コンピュータビジョンとグラフィックスにおいて依然として難しい問題である。
本稿では,動的シーンの動作と外観を疎制御点と高密度ガウスに明示的に分解する新しい表現を提案する。
提案手法は,高忠実度な外観を維持しつつ,ユーザ制御のモーション編集を可能にする。
論文 参考訳(メタデータ) (2023-12-04T11:57:14Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
暗黙の神経表現は、動的なシーンの再構築とレンダリングに対する新しいアプローチの道を開いた。
本稿では,3次元ガウシアンを用いてシーンを再構成し,標準空間で学習する,変形可能な3次元ガウシアンスプラッティング法を提案する。
微分ガウシアン化器により、変形可能な3Dガウシアンは高いレンダリング品質だけでなく、リアルタイムレンダリング速度も達成できる。
論文 参考訳(メタデータ) (2023-09-22T16:04:02Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
動的シーンビュー合成と6自由度(6-DOF)追跡のタスクを同時に処理する手法を提案する。
我々は、シーンを3Dガウスアンのコレクションとしてモデル化する最近の研究に触発された、分析バイシンセサイザーの枠組みに従う。
我々は,1人称視点合成,動的合成シーン合成,4次元映像編集など,我々の表現によって実現された多数のダウンストリームアプリケーションを紹介した。
論文 参考訳(メタデータ) (2023-08-18T17:59:21Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
本稿では,モノクラーRGBビデオ入力のみから動的シーンの3次元形状と物理パラメータを学習する手法を提案する。
実験により,提案手法は,競合するニューラルフィールドアプローチと比較して,動的シーンのメッシュとビデオの再構成に優れることを示した。
論文 参考訳(メタデータ) (2022-10-22T04:57:55Z) - Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model [76.64071133839862]
モノクロRGBビデオから一般的なデフォーミングシーンをキャプチャすることは、多くのコンピュータグラフィックスや視覚アプリケーションにとって不可欠である。
提案手法であるUb4Dは、大きな変形を処理し、閉塞領域での形状補完を行い、可変ボリュームレンダリングを用いて、単眼のRGBビデオを直接操作することができる。
我々の新しいデータセットの結果は公開され、表面の復元精度と大きな変形に対する堅牢性の観点から、技術の現状が明らかに改善されていることを実証する。
論文 参考訳(メタデータ) (2022-06-16T17:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。