論文の概要: All Entities are Not Created Equal: Examining the Long Tail for Fine-Grained Entity Typing
- arxiv url: http://arxiv.org/abs/2410.17355v1
- Date: Tue, 22 Oct 2024 18:47:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:26.150998
- Title: All Entities are Not Created Equal: Examining the Long Tail for Fine-Grained Entity Typing
- Title(参考訳): すべてのエンティティは平等に作られていない:細粒化エンティティタイピングのロングテールを調べる
- Authors: Advait Deshmukh, Ashwin Umadi, Dananjay Srinivas, Maria Leonor Pacheco,
- Abstract要約: 事前訓練された言語モデル(PLM)は大量のデータに基づいて訓練されており、言語能力とともに世界の知識を捉えるのに役立つ。
PLMは共起パターンから学習するので、事前学習データに含まれる頻度に応じて、エンティティに関するより多くの知識や少ない知識を含む可能性が高い。
PLMに依存したエンティティタイピングアプローチが、分布の長い部分でエンティティと競合することを示します。
- 参考スコア(独自算出の注目度): 5.184629432327821
- License:
- Abstract: Pre-trained language models (PLMs) are trained on large amounts of data, which helps capture world knowledge alongside linguistic competence. Due to this, they are extensively used for ultra-fine entity typing tasks, where they provide the entity knowledge held in its parameter space. Given that PLMs learn from co-occurrence patterns, they likely contain more knowledge or less knowledge about entities depending on their how frequent they are in the pre-training data. In this work, we probe PLMs to elicit encoded entity probabilities and demonstrate that they highly correlate with their frequency in large-scale internet data. Then, we demonstrate that entity-typing approaches that rely on PLMs struggle with entities at the long tail on the distribution. Our findings suggests that we need to go beyond PLMs to produce solutions that perform well for rare, new or infrequent entities.
- Abstract(参考訳): 事前訓練された言語モデル(PLM)は大量のデータに基づいて訓練されており、言語能力とともに世界の知識を捉えるのに役立つ。
このため、超微細なエンティティタイピングタスクに広く使われ、パラメータ空間に保持されるエンティティ知識を提供する。
PLMは共起パターンから学習するので、事前学習データに含まれる頻度に応じて、エンティティに関するより多くの知識や少ない知識を含む可能性が高い。
本研究では,符号化されたエンティティの確率を推定するためにPLMを探索し,大規模インターネットデータにおいてその周波数と高い相関性を示す。
次に、PLMに依存するエンティティタイピングアプローチが、分布の長い部分でエンティティと競合することを示す。
我々の発見は、稀な、新しい、または稀なエンティティに対してうまく機能するソリューションを作るためには、PLMを超えて行く必要があることを示唆している。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge [55.65162959527848]
大規模言語モデルは、多くの知識集約的なタスクにおいて優れたパフォーマンスを示している。
しかし、事前学習データには誤解を招く傾向があり、矛盾する情報も含まれている。
本研究では,LLMの学習嗜好を,矛盾する知識を持つデータに対して体系的に分析する。
論文 参考訳(メタデータ) (2024-10-07T06:49:41Z) - Learning from Natural Language Explanations for Generalizable Entity Matching [19.978468744557173]
バイナリ分類とは対照的に、条件生成タスクとしてエンティティマッチングを再キャストする。
これにより、LLM推論を自然言語による説明を通じて、より小さなエンティティマッチングモデルに分割することが可能になる。
論文 参考訳(メタデータ) (2024-06-13T17:08:58Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - The first step is the hardest: Pitfalls of Representing and Tokenizing
Temporal Data for Large Language Models [10.414206635385632]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な一般化を実証している。
ウェアラブルや電子健康記録から得られたデータなど、数値データや時間データをこれらのモデルに入力する際に、顕著な障害が発生する。
モバイルヘルスセンシングなどの人間中心のタスクにLLMを用いた最近の研究について論じるとともに、一般的なLLMが時間データを誤ってトークン化していることを示すケーススタディを示す。
論文 参考訳(メタデータ) (2023-09-12T13:51:29Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
大規模言語モデル(LLM)は汎用的であり、その創発的能力と一般化性のために異なるタスクを解くことができる。
以前の研究では、グラフニューラルネットワーク(GNN)のような追加モジュールは、外部の知識ベースから取得した知識に基づいて訓練されている。
論文 参考訳(メタデータ) (2023-09-06T15:55:01Z) - Entity Cloze By Date: What LMs Know About Unseen Entities [79.34707800653597]
言語モデル(LM)は通常、大規模なコーパスで一度訓練され、更新されずに数年間使用される。
本研究では,LMの事前学習時に存在しなかった新しいエンティティについて,LMがどのような推論ができるのかを解析する枠組みを提案する。
本論文は,その発祥日によって索引付けされたエンティティのデータセットを,英語のウィキペディア記事と組み合わせて作成し,各エンティティに関する文章を検索する。
論文 参考訳(メタデータ) (2022-05-05T17:59:31Z) - KALA: Knowledge-Augmented Language Model Adaptation [65.92457495576141]
プレトレーニング言語モデル(PLM)のための新しいドメイン適応フレームワークを提案する。
知識拡張言語モデル適応(英: Knowledge-Augmented Language Model Adaptation, KALA)は、PLMの中間的隠れ表現をドメイン知識で修飾する。
計算効率は高いが,我々のKALAは適応型事前学習よりも優れていた。
論文 参考訳(メタデータ) (2022-04-22T08:11:59Z) - A Simple but Effective Pluggable Entity Lookup Table for Pre-trained
Language Models [93.39977756450354]
本稿では,シンプルで効果的なPugable Entity Lookup Table (PELT) をオンデマンドで構築することを提案する。
PELTは、事前訓練された言語モデルにエンティティ補足的知識を注入するための入力として、相互に接続することができる。
知識関連タスクの実験により,私たちの手法であるPELTが,関連コーパスからのエンティティ知識をPLMに柔軟かつ効果的に伝達できることが実証された。
論文 参考訳(メタデータ) (2022-02-27T16:30:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。