論文の概要: Dialectal and Low Resource Machine Translation for Aromanian
- arxiv url: http://arxiv.org/abs/2410.17728v1
- Date: Wed, 23 Oct 2024 10:00:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:20.081838
- Title: Dialectal and Low Resource Machine Translation for Aromanian
- Title(参考訳): アロマニア語のための辞書・低資源機械翻訳
- Authors: Alexandru-Iulius Jerpelea, Alina-Ştefania Rădoi, Sergiu Nisioi,
- Abstract要約: ルーマニア語、英語、ルーマニア語を翻訳できるニューラルマシン翻訳システムを提案する。
BLEUスコアはテキストの方向やジャンルによって17から32まで様々である。
Aromanian-Romanian-Romanian bilingual corpus は 79k 個の清潔な文対から構成される。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: We present a neural machine translation system that can translate between Romanian, English, and Aromanian (an endangered Eastern Romance language); the first of its kind. BLEU scores range from 17 to 32 depending on the direction and genre of the text. Alongside, we release the biggest known Aromanian-Romanian bilingual corpus, consisting of 79k cleaned sentence pairs. Additional tools such as an agnostic sentence embedder (used for both text mining and automatic evaluation) and a diacritics converter are also presented. We publicly release our findings and models. Finally, we describe the deployment of our quantized model at https://arotranslate.com.
- Abstract(参考訳): 本稿では,ルーマニア語,英語,ルーマニア語(絶滅危惧東ロマンス語)を翻訳するニューラルマシン翻訳システムについて述べる。
BLEUスコアはテキストの方向やジャンルによって17から32まで様々である。
同時に,79kの文対からなるルーマニア語とルーマニア語のバイリンガルコーパスを公表した。
テキストマイニングと自動評価の両方に使用される)およびダイアクリティカルコンバータなどの追加ツールも提示する。
結果とモデルが公開されています。
最後に、量子化されたモデルの配置について、https://arotranslate.com.comで説明します。
関連論文リスト
- Enhancing Language Learning through Technology: Introducing a New English-Azerbaijani (Arabic Script) Parallel Corpus [0.9051256541674136]
本稿では,英語・アゼルバイジャン語の並列コーパスについて紹介する。
これは、低リソース言語のための言語学習と機械翻訳の技術的ギャップを埋めるように設計されている。
論文 参考訳(メタデータ) (2024-07-06T21:23:20Z) - A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - Conversations in Galician: a Large Language Model for an
Underrepresented Language [2.433983268807517]
本稿では,ガリシア語に対する自然言語処理(NLP)を強化するために設計された2つの新しい資源を紹介する。
52,000の指示と実演を含むアルパカデータセットのガリシア適応について述べる。
データセットユーティリティのデモとして、元々モデルでサポートされていない言語であるGalicianで、LLaMA-7Bの理解と応答を微調整した。
論文 参考訳(メタデータ) (2023-11-07T08:52:28Z) - The Grammar and Syntax Based Corpus Analysis Tool For The Ukrainian
Language [0.0]
StyloMetrixは、英語、スペイン語、ドイツ語などの文法、スタイリスティック、構文パターンを分析するツールである。
我々は、StyloMetrixパイプラインを説明し、テキスト分類タスクのためにこのツールでいくつかの実験を行う。
また、パッケージの主な制限とメトリクスの評価手順についても述べる。
論文 参考訳(メタデータ) (2023-05-22T22:52:47Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
低レベルの言語と高レベルの言語のパフォーマンスギャップを狭めるためのデータセットとモデルを作成します。
何千ものタスクをトレーニングしながらオーバーフィッティングに対処するために,複数のアーキテクチャとトレーニングの改善を提案する。
本モデルでは,従来の最先端技術と比較して,BLEUの44%の改善を実現している。
論文 参考訳(メタデータ) (2022-07-11T07:33:36Z) - X-SCITLDR: Cross-Lingual Extreme Summarization of Scholarly Documents [12.493662336994106]
学術領域における4つの異なる言語に対する抽象的言語間要約データセットを提案する。
我々は、英語論文を処理し、ドイツ語、イタリア語、中国語、日本語で要約を生成するモデルを訓練し、評価する。
論文 参考訳(メタデータ) (2022-05-30T12:31:28Z) - Models and Datasets for Cross-Lingual Summarisation [78.56238251185214]
対象言語における多文要約に関連付けられたソース言語において,長い文書を含む言語間要約コーパスを提案する。
コーパスは、チェコ語、英語、フランス語、ドイツ語の4つの言語について、12の言語対と指示をカバーしている。
言語対応のウィキペディアのタイトルから、主節と記事の本体を組み合わせることで、ウィキペディアから言語横断的な文書要約インスタンスを導出する。
論文 参考訳(メタデータ) (2022-02-19T11:55:40Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - The birth of Romanian BERT [1.377045689881944]
本稿では,ルーマニア語トランスフォーマーをベースとした最初の言語モデルであるルーマニア語BERTについて紹介する。
本稿では,コーパスの構成とクリーニング,モデルトレーニングプロセス,およびルーマニアの様々なデータセット上でのモデルの広範囲な評価について論じる。
論文 参考訳(メタデータ) (2020-09-18T09:30:48Z) - A Multi-Perspective Architecture for Semantic Code Search [58.73778219645548]
テキストマッチングのための新しい多言語間ニューラルネットワークを提案する。
CoNaLaデータセットを用いた実験により,提案したモデルでは,従来の手法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-05-06T04:46:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。