論文の概要: Dialectal and Low Resource Machine Translation for Aromanian
- arxiv url: http://arxiv.org/abs/2410.17728v1
- Date: Wed, 23 Oct 2024 10:00:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:20.081838
- Title: Dialectal and Low Resource Machine Translation for Aromanian
- Title(参考訳): アロマニア語のための辞書・低資源機械翻訳
- Authors: Alexandru-Iulius Jerpelea, Alina-Ştefania Rădoi, Sergiu Nisioi,
- Abstract要約: ルーマニア語、英語、ルーマニア語を翻訳できるニューラルマシン翻訳システムを提案する。
BLEUスコアはテキストの方向やジャンルによって17から32まで様々である。
Aromanian-Romanian-Romanian bilingual corpus は 79k 個の清潔な文対から構成される。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: We present a neural machine translation system that can translate between Romanian, English, and Aromanian (an endangered Eastern Romance language); the first of its kind. BLEU scores range from 17 to 32 depending on the direction and genre of the text. Alongside, we release the biggest known Aromanian-Romanian bilingual corpus, consisting of 79k cleaned sentence pairs. Additional tools such as an agnostic sentence embedder (used for both text mining and automatic evaluation) and a diacritics converter are also presented. We publicly release our findings and models. Finally, we describe the deployment of our quantized model at https://arotranslate.com.
- Abstract(参考訳): 本稿では,ルーマニア語,英語,ルーマニア語(絶滅危惧東ロマンス語)を翻訳するニューラルマシン翻訳システムについて述べる。
BLEUスコアはテキストの方向やジャンルによって17から32まで様々である。
同時に,79kの文対からなるルーマニア語とルーマニア語のバイリンガルコーパスを公表した。
テキストマイニングと自動評価の両方に使用される)およびダイアクリティカルコンバータなどの追加ツールも提示する。
結果とモデルが公開されています。
最後に、量子化されたモデルの配置について、https://arotranslate.com.comで説明します。
関連論文リスト
- Decoupled Vocabulary Learning Enables Zero-Shot Translation from Unseen Languages [55.157295899188476]
ニューラルマシン翻訳システムは、異なる言語の文を共通の表現空間にマッピングすることを学ぶ。
本研究では、この仮説を未知の言語からのゼロショット翻訳により検証する。
この設定により、全く見えない言語からのゼロショット翻訳が可能になることを実証する。
論文 参考訳(メタデータ) (2024-08-05T07:58:58Z) - The first neural machine translation system for the Erzya language [0.0951828574518325]
絶滅危惧言語エルジーア語とロシア語を翻訳するための最初のニューラルマシン翻訳システムを提案する。
BLEUのスコアはエルジーア語とロシア語への翻訳で17と19であり、翻訳の半数以上が母語話者によって受け入れられていると評価されている。
収集したテキストコーパス、新しい言語識別モデル、Erzya言語に適応した多言語文エンコーダとともに、翻訳モデルをリリースする。
論文 参考訳(メタデータ) (2022-09-19T22:21:37Z) - ParaCotta: Synthetic Multilingual Paraphrase Corpora from the Most
Diverse Translation Sample Pair [8.26923056580688]
合成パラフレーズコーパスを17言語でリリースする。
本手法は,パラフレーズを生成するために,単言語データとニューラルマシン翻訳システムにのみ依存する。
論文 参考訳(メタデータ) (2022-05-10T03:40:14Z) - BitextEdit: Automatic Bitext Editing for Improved Low-Resource Machine
Translation [53.55009917938002]
自動編集によりマイニングしたビットクストを改良することを提案する。
提案手法は,5つの低リソース言語ペアと10の翻訳方向に対して,最大8個のBLEUポイントでCCMatrixマイニングビットクストの品質を向上することを示す。
論文 参考訳(メタデータ) (2021-11-12T16:00:39Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslateは、英語と絶滅危惧言語チェロキーとの翻訳のためのオンライン機械翻訳デモシステムである。
統計モデルとニューラルネットワークモデルの両方をサポートし、信頼性をユーザに通知するための品質評価を提供する。
論文 参考訳(メタデータ) (2021-07-30T17:58:54Z) - Unsupervised Transfer Learning in Multilingual Neural Machine
Translation with Cross-Lingual Word Embeddings [72.69253034282035]
我々は、言語独立多言語文表現を活用し、新しい言語に容易に一般化する。
複数のロマンス言語を含むベースシステムを用いてポルトガル語から盲目的に復号し、ポルトガル語では36.4 BLEU、ロシア語では12.8 BLEUのスコアを得た。
非反復的逆翻訳によるより実用的な適応アプローチを探求し、高品質の翻訳を生産するモデルの能力を活用します。
論文 参考訳(メタデータ) (2021-03-11T14:22:08Z) - A Multilingual Neural Machine Translation Model for Biomedical Data [84.17747489525794]
生物医学領域におけるテキストの翻訳に使用できる多言語ニューラルマシン翻訳モデルをリリースする。
このモデルは5つの言語(フランス語、ドイツ語、イタリア語、韓国語、スペイン語)から英語に翻訳できる。
ドメインタグを使用して、大量のジェネリックおよびバイオメディカルデータをトレーニングする。
論文 参考訳(メタデータ) (2020-08-06T21:26:43Z) - Neural Machine Translation for Low-Resourced Indian Languages [4.726777092009554]
機械翻訳は、人間の関与なしにテキストを別の言語に変換する効果的な手法である。
本稿では,NMTを英語・タミル語・英語・マラヤラム語という,最も形態学的に豊かな2つの言語に適用した。
我々は,BPE(Byte-Pair-Encoded)とMultiBPE(MultiBPE)を併用したマルチヘッド自己アテンション(Multihead self-attention)を用いた新しいNMTモデルを提案し,効率的な翻訳システムを開発した。
論文 参考訳(メタデータ) (2020-04-19T17:29:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。