LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection
- URL: http://arxiv.org/abs/2503.14012v2
- Date: Mon, 02 Jun 2025 16:04:39 GMT
- Title: LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection
- Authors: Wei Lu, Si-Bao Chen, Hui-Dong Li, Qing-Ling Shu, Chris H. Q. Ding, Jin Tang, Bin Luo,
- Abstract summary: We introduce LEGNet, a lightweight backbone network featuring a novel Edge-Gaussian Aggregation (EGA) module.<n>EGA module integrates: (a) orientation-aware Scharr filters to sharpen crucial edge details often lost in low-contrast or blurred objects, and (b) Gaussian-prior-based feature refinement to suppress noise and regularize ambiguous feature responses.<n> Comprehensive evaluations across five benchmarks demonstrate that LEGNet achieves state-of-the-art performance, particularly in detecting low-quality objects.
- Score: 18.804394986840887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing object detection (RSOD) often suffers from degradations such as low spatial resolution, sensor noise, motion blur, and adverse illumination. These factors diminish feature distinctiveness, leading to ambiguous object representations and inadequate foreground-background separation. Existing RSOD methods exhibit limitations in robust detection of low-quality objects. To address these pressing challenges, we introduce LEGNet, a lightweight backbone network featuring a novel Edge-Gaussian Aggregation (EGA) module specifically engineered to enhance feature representation derived from low-quality remote sensing images. EGA module integrates: (a) orientation-aware Scharr filters to sharpen crucial edge details often lost in low-contrast or blurred objects, and (b) Gaussian-prior-based feature refinement to suppress noise and regularize ambiguous feature responses, enhancing foreground saliency under challenging conditions. EGA module alleviates prevalent problems in reduced contrast, structural discontinuities, and ambiguous feature responses prevalent in degraded images, effectively improving model robustness while maintaining computational efficiency. Comprehensive evaluations across five benchmarks (DOTA-v1.0, v1.5, DIOR-R, FAIR1M-v1.0, and VisDrone2019) demonstrate that LEGNet achieves state-of-the-art performance, particularly in detecting low-quality objects. The code is available at https://github.com/lwCVer/LEGNet.
Related papers
- It's Not the Target, It's the Background: Rethinking Infrared Small Target Detection via Deep Patch-Free Low-Rank Representations [5.326302374594885]
In this paper, we propose a novel end-to-end IRSTD framework, termed LRRNet.<n>Inspired by the physical compressibility of cluttered scenes, our approach adopts a compression-reconstruction-subtraction paradigm.<n>Experiments on multiple public datasets demonstrate that LRRNet outperforms 38 state-of-the-art methods in terms of detection accuracy, robustness, and computational efficiency.
arXiv Detail & Related papers (2025-06-12T07:24:45Z) - LL-Gaussian: Low-Light Scene Reconstruction and Enhancement via Gaussian Splatting for Novel View Synthesis [17.470869402542533]
Novel view synthesis (NVS) in low-light scenes remains a significant challenge due to degraded inputs.
We propose LL-Gaussian, a novel framework for 3D reconstruction and enhancement from low-light sRGB images.
Compared to state-of-the-art NeRF-based methods, LL-Gaussian achieves up to 2,000 times faster inference and reduces training time to just 2%.
arXiv Detail & Related papers (2025-04-14T15:39:31Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.
We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)
PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.
FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - RFWNet: A Lightweight Remote Sensing Object Detector Integrating Multi-Scale Receptive Fields and Foreground Focus Mechanism [10.997183129304409]
This study proposes an efficient and lightweight RSOD algorithm integrat-ing multi-scale receptive fields and foreground focus mechanism, named RFWNet.<n> Experimental evaluations on the DOTA V1.0 and NWPU VHR-10 datasets demonstrate that RFWNet achieves advanced perfor-mance with 6.0M parameters and can achieves 52 FPS.
arXiv Detail & Related papers (2025-03-01T16:02:15Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.<n>Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.<n>We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - DREB-Net: Dual-stream Restoration Embedding Blur-feature Fusion Network for High-mobility UAV Object Detection [38.882935730384965]
DREB-Net is an innovative object detection algorithm specifically designed for blurry images.
It addresses the particularities of blurry image object detection problem by incorporating a Blurry image Restoration Auxiliary Branch.
Experimental results indicate that DREB-Net can still effectively perform object detection tasks under motion blur in captured images.
arXiv Detail & Related papers (2024-10-23T12:32:20Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
arXiv Detail & Related papers (2024-03-14T09:57:15Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Attention Guided Network for Salient Object Detection in Optical Remote
Sensing Images [16.933770557853077]
salient object detection in optical remote sensing images (RSI-SOD) is a very difficult task.
We propose a novel Attention Guided Network (AGNet) for SOD in optical RSIs, including position enhancement stage and detail refinement stage.
AGNet achieves competitive performance compared to other state-of-the-art methods.
arXiv Detail & Related papers (2022-07-05T01:01:03Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - A Parallel Down-Up Fusion Network for Salient Object Detection in
Optical Remote Sensing Images [82.87122287748791]
We propose a novel Parallel Down-up Fusion network (PDF-Net) for salient object detection in optical remote sensing images (RSIs)
It takes full advantage of the in-path low- and high-level features and cross-path multi-resolution features to distinguish diversely scaled salient objects and suppress the cluttered backgrounds.
Experiments on the ORSSD dataset demonstrate that the proposed network is superior to the state-of-the-art approaches both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-10-02T05:27:57Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
arXiv Detail & Related papers (2020-04-28T06:03:54Z) - Small-Object Detection in Remote Sensing Images with End-to-End
Edge-Enhanced GAN and Object Detector Network [9.135036713000513]
A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance.
We propose a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images.
arXiv Detail & Related papers (2020-03-20T03:07:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.