論文の概要: POD-Attention: Unlocking Full Prefill-Decode Overlap for Faster LLM Inference
- arxiv url: http://arxiv.org/abs/2410.18038v1
- Date: Wed, 23 Oct 2024 17:06:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:36.332757
- Title: POD-Attention: Unlocking Full Prefill-Decode Overlap for Faster LLM Inference
- Title(参考訳): POD-Attention: より高速なLLM推論のための完全プリフィル・デコードオーバーラップのアンロック
- Authors: Aditya K Kamath, Ramya Prabhu, Jayashree Mohan, Simon Peter, Ramachandran Ramjee, Ashish Panwar,
- Abstract要約: 我々は、ハイブリッドバッチの注意を効率的に計算する最初のGPUカーネルであるPOD-Attentionを紹介する。
POD-Attentionは、GPUのリソースを慎重に割り当てることで、計算帯域とメモリ帯域の両方の利用を最大化することを目的としている。
- 参考スコア(独自算出の注目度): 9.164093249308419
- License:
- Abstract: Each request in LLM inference goes through two phases: compute-bound prefill and memory-bandwidth-bound decode. To improve GPU utilization, recent systems use hybrid batching that combines the prefill and decode phases of different requests into the same batch. Hybrid batching works well for linear operations as it amortizes the cost of loading model weights from HBM. However, attention computation in hybrid batches remains inefficient because existing attention kernels are optimized for either prefill or decode. In this paper, we present POD-Attention -- the first GPU kernel that efficiently computes attention for hybrid batches. POD-Attention aims to maximize the utilization of both compute and memory bandwidth by carefully allocating the GPU's resources such that prefill and decode operations happen concurrently on the same multiprocessor. We integrate POD-Attention in a state-of-the-art LLM inference scheduler Sarathi-Serve. POD-Attention speeds up attention computation by up to 75% (mean 28%) and increases LLM serving throughput by up to 22% in offline inference. In online inference, POD-Attention enables lower time-to-first-token (TTFT), time-between-tokens (TBT), and request execution latency versus Sarathi-Serve.
- Abstract(参考訳): LLM推論の各要求は、計算バウンドプリフィルとメモリ帯域バウンドデコードという2つのフェーズを経る。
GPU利用を改善するために、最近のシステムは、異なるリクエストのプレフィルとデコードフェーズを同じバッチに組み合わせたハイブリッドバッチを使用する。
ハイブリッドバッチは、HBMからモデル重みをロードするコストを抑えるため、線形操作にはうまく機能する。
しかし、既存のアテンションカーネルはプリフィルやデコードに最適化されているため、ハイブリッドバッチでのアテンション計算は効率的ではない。
本稿では,ハイブリッドバッチの注意を効率的に計算する最初のGPUカーネルであるPOD-Attentionを提案する。
POD-Attentionは、プリフィルとデコード操作が同じマルチプロセッサ上で同時に行われるように、GPUのリソースを慎重に割り当てることで、計算とメモリの帯域幅の両方の利用を最大化することを目的としている。
我々は現在最先端のLLM推論スケジューラであるSarathi-ServeにPOD-Attentionを統合する。
POD-Attentionは、注意計算を75%(平均28%)高速化し、LLMのスループットを最大22%向上させる。
オンライン推論では、POD-Attentionは、TTFT(low time-to-first-token)、TBT(time-between-tokens)、Sarathi-Serveに対する実行遅延を要求できる。
関連論文リスト
- Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
我々は,デコーディングのメモリバウンドネスに対処するために,プログレッシブ・ミックス・プレシジョン・デコーディング(PMPD)を導入する。
PMPDはfp16モデルの行列ベクトル乗算において1.4$-$12.2$times$ Speedupを達成する。
我々の手法は、fp16モデルよりも3.8$-$8.0$times$、均一量子化アプローチよりも1.54$times$のスループット向上をもたらす。
論文 参考訳(メタデータ) (2024-10-17T11:46:33Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
論文 参考訳(メタデータ) (2024-08-21T16:10:41Z) - MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention [36.49445805074941]
Minference (Milliontokens Inference) は長周期処理の前処理を高速化するスパース計算法である。
我々は,MInferenceが精度を維持しつつ,A100にプリフィルする際の推論遅延を最大10倍に効果的に低減できることを実証した。
論文 参考訳(メタデータ) (2024-07-02T17:59:56Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Bifurcated Attention: Accelerating Massively Parallel Decoding with Shared Prefixes in LLMs [39.16152482491236]
Bifurcated attentionは、共有コンテキストバッチデコードシナリオにおける言語モデル推論を強化するために設計された手法である。
提案手法は,高バッチサイズおよび拡張コンテキスト長のレイテンシに寄与する重要な要因である冗長メモリIOコストの課題に対処する。
論文 参考訳(メタデータ) (2024-03-13T16:30:57Z) - Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve [9.854130239429487]
高スループットと低レイテンシのトレードオフに対処するため,効率的な推論スケジューラであるSarathi-Serveを導入する。
我々の手法は、テール遅延下でのモデルとハードウェア間での推論性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-04T18:47:08Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiREは2つの新しいコンポーネントから構成される: (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (ii) DA-TOP-$k$: 効率的なマルチデバイス近似トップ-k$演算子) (i) (i) (i) (i) (i) (i) (i) DA-TOP-$k$演算子) 。
我々は、10億のパラメータモデルにおいて、HiREがソフトマックスとフィードフォワード層の両方に適用され、ほぼ一致した事前学習と下流の精度を実現し、1台のTPUv5eデバイスで1.47Times$の推論遅延を高速化することを示した。
論文 参考訳(メタデータ) (2024-02-14T18:04:36Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
重み付けとアクティベーションの両方を4ビットにキャストすることで、大きな生成モデルに対する推論計算の大部分が実行可能であることを示す。
これをQUIKと呼ばれるハイブリッド量子化戦略により実現し、重みとアクティベーションの大部分を4ビットに圧縮する。
我々は、QUIKフォーマットを高効率なレイヤワイドランタイムに適合させるGPUカーネルを提供し、これにより、エンドツーエンドのスループットが3.4倍に向上する。
論文 参考訳(メタデータ) (2023-10-13T17:15:05Z) - Does Long-Term Series Forecasting Need Complex Attention and Extra Long
Inputs? [21.15722677855935]
トランスフォーマーベースのモデルは、様々な時系列タスクにおいて印象的なパフォーマンスを達成した。
近年、LTSF(Long-Term Series Forecasting)タスクも注目されている。
トランスフォーマーベースの手法を要求される計算複雑性と長いシーケンスのため、LTSFタスクへの適用には2つの大きな問題がある。
論文 参考訳(メタデータ) (2023-06-08T08:37:49Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
BERTのようなトランスフォーマーベースの言語モデルでは、自然言語処理(NLP)タスクの精度が大幅に向上する。
We present EdgeBERT, a in-deepth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP。
論文 参考訳(メタデータ) (2020-11-28T19:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。