論文の概要: How to Design a Quantum Streaming Algorithm Without Knowing Anything About Quantum Computing
- arxiv url: http://arxiv.org/abs/2410.18922v1
- Date: Thu, 24 Oct 2024 17:11:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:42:42.960375
- Title: How to Design a Quantum Streaming Algorithm Without Knowing Anything About Quantum Computing
- Title(参考訳): 量子コンピューティングについて何も知らずに量子ストリーミングアルゴリズムを設計する方法
- Authors: John Kallaugher, Ojas Parekh, Nadezhda Voronova,
- Abstract要約: 空間複雑性の利点は,従来のストリーミングモデルよりも量子アルゴリズムの方が優れていることを示す。
これらすべての結果を包含する簡単な量子スケッチを提供し、量子スケッチをブラックボックスとして使用して、完全に古典的なアルゴリズムから導出できるようにします。
- 参考スコア(独自算出の注目度): 0.2184775414778289
- License:
- Abstract: A series of work [GKK+08, Kal22, KPV24] has shown that asymptotic advantages in space complexity are possible for quantum algorithms over their classical counterparts in the streaming model. We give a simple quantum sketch that encompasses all these results, allowing them to be derived from entirely classical algorithms using our quantum sketch as a black box. The quantum sketch and its proof of correctness are designed to be accessible to a reader with no background in quantum computation, relying on only a small number of self-contained quantum postulates.
- Abstract(参考訳): 一連の研究 [GKK+08, Kal22, KPV24] は、空間複雑性における漸近的なアドバンテージが、ストリーミングモデルにおける古典的アルゴリズムよりも量子アルゴリズムに可能であることを示した。
これらすべての結果を包含する簡単な量子スケッチを提供し、量子スケッチをブラックボックスとして使用して、完全に古典的なアルゴリズムから導出できるようにします。
量子スケッチとその正しさの証明は、少数の自己完結型量子仮定にのみ依存して、量子計算の背景を持たない読者にアクセスできるように設計されている。
関連論文リスト
- Quantum decoherence from complex saddle points [0.0]
量子デコヒーレンス(quantum decoherence)は、量子物理学を古典物理学にブリッジする効果である。
カルデイラ・レゲットモデルにおける第一原理計算について述べる。
また、モンテカルロ計算による一般モデルへの作業拡張についても論じる。
論文 参考訳(メタデータ) (2024-08-29T15:35:25Z) - Lecture Notes on Quantum Algorithms in Open Quantum Systems [0.0]
これらの講義ノートは、量子アルゴリズムにオープン量子システム理論を使用するための明確で包括的な紹介を提供することを目的としている。
主な議論は変分量子アルゴリズム、量子エラー補正、動的デカップリング、量子エラー緩和である。
論文 参考訳(メタデータ) (2024-06-17T15:00:25Z) - Limitations of Noisy Quantum Devices in Computational and Entangling
Power [5.178527492542246]
回路深さが$O(log n)$以上のノイズ量子デバイスは、いかなる量子アルゴリズムにも利点がないことを示す。
また、ノイズ量子デバイスが1次元および2次元の量子ビット接続の下で生成できる最大エンタングルメントについても検討する。
論文 参考訳(メタデータ) (2023-06-05T12:29:55Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
量子ウォークスを用いて量子情報拡散パターンを探索する量子探索プロトコルを設計する。
我々は、異常や古典的輸送を調査するために、コヒーレントな静的および動的障害に焦点を当てる。
以上の結果から,複雑なネットワークで発生する欠陥や摂動の情報を読み取る装置として,量子ウォーク(Quantum Walk)が考えられる。
論文 参考訳(メタデータ) (2020-10-20T20:03:19Z) - Quantum supremacy in driven quantum many-body systems [0.0]
一般周期駆動型量子多体系において量子超越性が得られることを示す。
我々の提案は、大規模な量子プラットフォームが量子超越性を実証し、ベンチマークする方法を開く。
論文 参考訳(メタデータ) (2020-02-27T07:20:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。