Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals
- URL: http://arxiv.org/abs/2410.19147v1
- Date: Thu, 24 Oct 2024 20:30:14 GMT
- Title: Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals
- Authors: Ahmed Temtam, Megan A. Witherow, Liangsuo Ma, M. Shibly Sadique, F. Gerard Moeller, Khan M. Iftekharuddin,
- Abstract summary: This study employs data-driven machine learning (ML) modeling of rs-fMRI BOLD features representing multiple time points to identify region(s) of interest that differentiate OUD subjects from healthy controls (HC)
Then, we use the Boruta ML algorithm to identify statistically significant BOLD features that differentiate OUD from HC, identifying the DMN as the most salient functional network for OUD.
- Score: 0.5870004969741518
- License:
- Abstract: Understanding the neurobiology of opioid use disorder (OUD) using resting-state functional magnetic resonance imaging (rs-fMRI) may help inform treatment strategies to improve patient outcomes. Recent literature suggests temporal characteristics of rs-fMRI blood oxygenation level-dependent (BOLD) signals may offer complementary information to functional connectivity analysis. However, existing studies of OUD analyze BOLD signals using measures computed across all time points. This study, for the first time in the literature, employs data-driven machine learning (ML) modeling of rs-fMRI BOLD features representing multiple time points to identify region(s) of interest that differentiate OUD subjects from healthy controls (HC). Following the triple network model, we obtain rs-fMRI BOLD features from the default mode network (DMN), salience network (SN), and executive control network (ECN) for 31 OUD and 45 HC subjects. Then, we use the Boruta ML algorithm to identify statistically significant BOLD features that differentiate OUD from HC, identifying the DMN as the most salient functional network for OUD. Furthermore, we conduct brain activity mapping, showing heightened neural activity within the DMN for OUD. We perform 5-fold cross-validation classification (OUD vs. HC) experiments to study the discriminative power of functional network features with and without fusing demographic features. The DMN shows the most discriminative power, achieving mean AUC and F1 scores of 80.91% and 73.97%, respectively, when fusing BOLD and demographic features. Follow-up Boruta analysis using BOLD features extracted from the medial prefrontal cortex, posterior cingulate cortex, and left and right temporoparietal junctions reveals significant features for all four functional hubs within the DMN.
Related papers
- Diagnosis and Pathogenic Analysis of Autism Spectrum Disorder Using Fused Brain Connection Graph [14.00990852115585]
We propose a model for diagnosing Autism spectrum disorder (ASD) using multimodal magnetic resonance imaging (MRI) data.
Our approach integrates brain connectivity data fromDTI and functional MRI, employing graph neural networks (GNNs) for fused graph classification.
We analyze network node centrality, calculating degree, subgraph, and eigenvector centralities on a bimodal fused brain graph to identify pathological regions linked to ASD.
arXiv Detail & Related papers (2024-09-22T01:23:46Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
A novel hierarchical structural-functional connectivity fusing (HSCF) model is proposed to construct brain structural-functional connectivity matrices.
Results from a wide range of tests performed on the public Alzheimer's Disease Neuroimaging Initiative database show that the proposed model performs better than competing approaches.
arXiv Detail & Related papers (2023-06-16T05:22:25Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects.
We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge.
arXiv Detail & Related papers (2023-06-15T16:22:57Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - New Interpretable Patterns and Discriminative Features from Brain
Functional Network Connectivity Using Dictionary Learning [21.676573007839544]
ICA can identify patterns that can discriminate between healthy controls (HC) and patients with various mental disorders such as schizophrenia (Sz)
dictionary learning (DL) enables the discovery of hidden information in data using learnable basis signals through the use of sparsity.
We present a new method that leverages ICA and DL for the identification of directly interpretable patterns to discriminate between the HC and Sz groups.
arXiv Detail & Related papers (2022-11-10T19:49:16Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Identifying Autism Spectrum Disorder Based on Individual-Aware
Down-Sampling and Multi-Modal Learning [4.310840361752551]
We propose a novel feature extraction method for fMRI that can learn a personalized lowe-resolution representation of the entire brain networking.
The present model has achieved a mean classification accuracy of 85.95% and a mean AUC of 0.92, which is better than the state-of-the-art methods.
arXiv Detail & Related papers (2021-09-19T14:22:55Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.