論文の概要: Legal Judgment Reimagined: PredEx and the Rise of Intelligent AI Interpretation in Indian Courts
- arxiv url: http://arxiv.org/abs/2406.04136v1
- Date: Thu, 6 Jun 2024 14:57:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:30:04.831454
- Title: Legal Judgment Reimagined: PredEx and the Rise of Intelligent AI Interpretation in Indian Courts
- Title(参考訳): 司法判決の再考:インドの裁判所におけるPredExとインテリジェントAI解釈の台頭
- Authors: Shubham Kumar Nigam, Anurag Sharma, Danush Khanna, Noel Shallum, Kripabandhu Ghosh, Arnab Bhattacharya,
- Abstract要約: textbfPrediction with textbfExplanation (textttPredEx)は、インドの文脈における法的判断予測と説明のための、専門家による最大のデータセットである。
このコーパスは、法的分析におけるAIモデルのトレーニングと評価を大幅に強化する。
- 参考スコア(独自算出の注目度): 6.339932924789635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of Large Language Models (LLMs), predicting judicial outcomes poses significant challenges due to the complexity of legal proceedings and the scarcity of expert-annotated datasets. Addressing this, we introduce \textbf{Pred}iction with \textbf{Ex}planation (\texttt{PredEx}), the largest expert-annotated dataset for legal judgment prediction and explanation in the Indian context, featuring over 15,000 annotations. This groundbreaking corpus significantly enhances the training and evaluation of AI models in legal analysis, with innovations including the application of instruction tuning to LLMs. This method has markedly improved the predictive accuracy and explanatory depth of these models for legal judgments. We employed various transformer-based models, tailored for both general and Indian legal contexts. Through rigorous lexical, semantic, and expert assessments, our models effectively leverage \texttt{PredEx} to provide precise predictions and meaningful explanations, establishing it as a valuable benchmark for both the legal profession and the NLP community.
- Abstract(参考訳): LLM(Large Language Models)の時代において、法的手続きの複雑さと専門家による注釈付きデータセットの不足により、司法結果の予測が重大な課題となる。
これに対応するために、インドにおける15,000以上のアノテーションを特徴とする法的判断と説明のための、最大のエキスパートアノテーション付きデータセットである、 \textbf{Pred}iction with \textbf{Ex}planation (\texttt{PredEx})を紹介した。
この画期的なコーパスは、LLMへのインストラクションチューニングの適用を含む、法的分析におけるAIモデルのトレーニングと評価を大幅に強化する。
この手法は,法的な判断のために,これらのモデルの予測精度と説明深度を著しく改善した。
私たちは、一般とインドの両方の法的な文脈に合わせて、様々なトランスフォーマーベースのモデルを採用しました。
厳密な語彙、意味、専門家の評価を通じて、我々のモデルは、厳密な予測と意味のある説明を提供するために『texttt{PredEx}』を効果的に活用し、法律専門家とNLPコミュニティの両方にとって価値のあるベンチマークとして確立した。
関連論文リスト
- Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
本稿では,訴訟の関連判断に適した新規な数ショットワークフローを提案する。
LLMと人的専門家の関連判断を比較することで,信頼性の高い関連判断が得られたことを実証的に示す。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
文意味構造の解析において, GPT-3, ChatGPT, および GPT-4 モデルの成功と限界について検討した。
モデルはAMRの基本形式を確実に再現でき、しばしばコアイベント、引数、修飾子構造をキャプチャできる。
全体としては,これらのモデルではセマンティック構造の側面を捉えることができるが,完全に正確なセマンティック解析や解析をサポートする能力には重要な制限が残されている。
論文 参考訳(メタデータ) (2023-10-26T21:47:59Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions [0.16385815610837165]
法的意見の規模は増え続けており、法的意見の修辞的役割を正確に予測できるモデルを開発することはますます困難になっている。
本稿では,文の位置情報に関する知識によって強化された事前学習言語モデル(PLM)を用いて,修辞的役割を自動的に予測する新しいモデルアーキテクチャを提案する。
LegalEval@SemEval2023コンペティションの注釈付きコーパスに基づいて、我々のアプローチではパラメータが少なく、計算コストが低下することを示した。
論文 参考訳(メタデータ) (2023-10-08T20:33:55Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
我々は、前例と立法規定の両方に関して、弁護士の思考過程と平行してタスクを設計する。
最初の実験結果から,法の専門家のフィードバックを得て,対象の引用予測を洗練する。
我々は,弁護士が使用する決定パラメータに固執しながら,高い性能を達成し,解釈可能性を高めるためのプロトタイプアーキテクチャを導入する。
論文 参考訳(メタデータ) (2023-05-25T21:40:58Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Deconfounding Legal Judgment Prediction for European Court of Human
Rights Cases Towards Better Alignment with Experts [1.252149409594807]
この研究は、専門家による調整を伴わない法的な判断予測システムは、浅い表面信号に対して脆弱であることを示す。
これを緩和するために、私たちは統計的に予測されるが法的に無関係な情報を戦略的に識別するために、ドメインの専門知識を使用します。
論文 参考訳(メタデータ) (2022-10-25T08:37:25Z) - Probing as Quantifying the Inductive Bias of Pre-trained Representations [99.93552997506438]
本稿では,特定のタスクに対する表現の帰納的バイアスを評価することを目的とした,探索のための新しいフレームワークを提案する。
トークン、アーク、文レベルの一連のタスクに我々のフレームワークを適用します。
論文 参考訳(メタデータ) (2021-10-15T22:01:16Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。