論文の概要: Centaur: a foundation model of human cognition
- arxiv url: http://arxiv.org/abs/2410.20268v1
- Date: Sat, 26 Oct 2024 20:39:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:47.687599
- Title: Centaur: a foundation model of human cognition
- Title(参考訳): センター:人間の認知の基礎モデル
- Authors: Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno, Peter Dayan, Can Demircan, Maria K. Eckstein, Noémi Éltető, Thomas L. Griffiths, Susanne Haridi, Akshay K. Jagadish, Li Ji-An, Alexander Kipnis, Sreejan Kumar, Tobias Ludwig, Marvin Mathony, Marcelo Mattar, Alireza Modirshanechi, Surabhi S. Nath, Joshua C. Peterson, Milena Rmus, Evan M. Russek, Tankred Saanum, Natalia Scharfenberg, Johannes A. Schubert, Luca M. Schulze Buschoff, Nishad Singhi, Xin Sui, Mirko Thalmann, Fabian Theis, Vuong Truong, Vishaal Udandarao, Konstantinos Voudouris, Robert Wilson, Kristin Witte, Shuchen Wu, Dirk Wulff, Huadong Xiong, Eric Schulz,
- Abstract要約: 本稿では,自然言語で表現可能な実験において,人間の行動を予測する計算モデルCentaurを紹介する。
我々は、サイコ-101と呼ばれる新しい大規模データセットに基づいて、最先端の言語モデルを微調整することでCentaurを導出した。
- 参考スコア(独自算出の注目度): 39.36842876229657
- License:
- Abstract: Establishing a unified theory of cognition has been a major goal of psychology. While there have been previous attempts to instantiate such theories by building computational models, we currently do not have one model that captures the human mind in its entirety. Here we introduce Centaur, a computational model that can predict and simulate human behavior in any experiment expressible in natural language. We derived Centaur by finetuning a state-of-the-art language model on a novel, large-scale data set called Psych-101. Psych-101 reaches an unprecedented scale, covering trial-by-trial data from over 60,000 participants performing over 10,000,000 choices in 160 experiments. Centaur not only captures the behavior of held-out participants better than existing cognitive models, but also generalizes to new cover stories, structural task modifications, and entirely new domains. Furthermore, we find that the model's internal representations become more aligned with human neural activity after finetuning. Taken together, Centaur is the first real candidate for a unified model of human cognition. We anticipate that it will have a disruptive impact on the cognitive sciences, challenging the existing paradigm for developing computational models.
- Abstract(参考訳): 認知の統一理論を確立することが心理学の大きな目標であった。
計算モデルを構築してそのような理論をインスタンス化しようとする試みは過去にもあったが、現在、人間の心全体を捉えるモデルが1つも存在していない。
本稿では、自然言語で表現可能な実験において、人間の振る舞いを予測し、シミュレートできる計算モデルであるCentaurを紹介する。
我々は、サイコ-101と呼ばれる新しい大規模データセットに基づいて、最先端の言語モデルを微調整することでCentaurを導出した。
サイコ-101は前例のない規模に到達し、160の実験で6万人以上の参加者から1万以上の選択を行った。
センタウアは、既存の認知モデルよりもホールドアウト参加者の振る舞いを捉えているだけでなく、新しいカバーストーリー、構造的タスク修正、そして全く新しいドメインに一般化している。
さらに、微調整後、モデルの内部表現が人間の神経活動とより一致していることが判明した。
同時に、センターは人間の認知の統一モデルの最初の真の候補である。
我々は、それが認知科学に破壊的な影響を与えることを期待し、計算モデルを開発するための既存のパラダイムに挑戦する。
関連論文リスト
- Can Language Models Learn to Skip Steps? [59.84848399905409]
我々は推論においてステップをスキップする能力について研究する。
効率を高めたり認知負荷を減らすためのステップをスキップする人間とは異なり、モデルはそのようなモチベーションを持っていない。
私たちの研究は、人間のようなステップスキッピング能力に関する最初の調査である。
論文 参考訳(メタデータ) (2024-11-04T07:10:24Z) - From Imitation to Introspection: Probing Self-Consciousness in Language Models [8.357696451703058]
自己意識は自己の存在と思考の内省である。
本研究は,言語モデルに対する自己意識の実践的定義を示す。
論文 参考訳(メタデータ) (2024-10-24T15:08:17Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Turning large language models into cognitive models [0.0]
大規模言語モデルが認知モデルに変換可能であることを示す。
これらのモデルは人間の行動の正確な表現を提供し、2つの意思決定領域において従来の認知モデルよりも優れている。
これらの結果は、大規模で事前学習されたモデルが一般的な認知モデルに適応できることを示唆している。
論文 参考訳(メタデータ) (2023-06-06T18:00:01Z) - A Theory of Human-Like Few-Shot Learning [14.271690184738205]
我々は、フォン・ノイマン=ランダウアーの原理から人間のような小ショット学習の理論を導いた。
変分オートエンコーダ(VAE)のような深部生成モデルを用いて,この理論を近似することができる。
論文 参考訳(メタデータ) (2023-01-03T11:22:37Z) - Modeling Human Behavior Part I -- Learning and Belief Approaches [0.0]
探索とフィードバックを通じて行動のモデルや方針を学ぶ手法に焦点を当てる。
次世代の自律的適応システムは、主にAIエージェントと人間がチームとして一緒に働く。
論文 参考訳(メタデータ) (2022-05-13T07:33:49Z) - Human-Understandable Decision Making for Visual Recognition [30.30163407674527]
モデル学習プロセスに人間の知覚の優先順位を組み込むことにより,深層ニューラルネットワークを訓練する新たなフレームワークを提案する。
提案モデルの有効性を2つの古典的視覚認識タスクで評価する。
論文 参考訳(メタデータ) (2021-03-05T02:07:33Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。