Pseudochaotic Many-Body Dynamics as a Pseudorandom State Generator
- URL: http://arxiv.org/abs/2410.21268v1
- Date: Mon, 28 Oct 2024 17:58:12 GMT
- Title: Pseudochaotic Many-Body Dynamics as a Pseudorandom State Generator
- Authors: Wonjun Lee, Hyukjoon Kwon, Gil Young Cho,
- Abstract summary: We introduce a new class of quantum many-body dynamics in quantum simulations, namely 'pseudochaotic dynamics'
We show that the pseudochaotic dynamics can generate a representative pseudo-quantum state, specifically a random subset-phase state.
- Score: 5.835366072870476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new class of quantum many-body dynamics in quantum simulations, namely 'pseudochaotic dynamics,' which generates computationally indistinguishable states from Haar-random states within the limited access to the measurement outcomes and runtime of quantum computations. While it is not chaotic, a defining characteristics of many-body quantum chaos, namely out-of-time-ordered correlators, fail to differentiate the pseudochaotic dynamics from chaotic one. We systematically construct such pseudochaotic unitary evolution and investigate their nature through extensive numerical and analytic calculations. Remarkably, we show that the pseudochaotic dynamics can generate a representative pseudo-quantum state, specifically a random subset-phase state, from initial computational states with a depth tightly bound by polylog(n) with the system size n, which opens up a practical route to realize pseudorandom states in near term quantum devices.
Related papers
- Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Quantum Randomness through Emergent Confinement Mechanism in Measured Tensor Network States [0.0]
Large-scale random quantum states are crucial for quantum computing and many-body physics.
We present a practical method based on local measurements of random Networks.
We show that confinement is a general mechanism underlying random state generation in broader settings.
arXiv Detail & Related papers (2025-04-23T18:00:02Z) - Diagnosing chaos with projected ensembles of process tensors [0.22499166814992436]
We introduce the projected process ensemble an ensemble of pure states of a process tensor in a given basis of local interventions, and use to define increasingly more fine-grained probes of quantum chaos.
We discover characteristic entanglement structures within the ensemble that can distinguish sharply chaotic from integrable dynamics, overcoming deficiencies of the quantum dynamical and entemporaltropies.
Our work elucidates the fingerprints of chaos in interacting quantum processes, and provides a unified framework for analyzing unitary and monitored many-body dynamics.
arXiv Detail & Related papers (2025-02-19T18:06:07Z) - Observing dynamical localization on a trapped-ion qudit quantum processor [0.0]
We use a trapped-ion qudit quantum processor to study a disorder-free $S=1$ Floquet model.<n>We experimentally observe an emergent $3T$ subharmonic response, demonstrating the ability to witness non-ergodic dynamics beyond qubit systems.
arXiv Detail & Related papers (2024-12-17T18:07:03Z) - Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Space-time correlations in monitored kinetically constrained discrete-time quantum dynamics [0.0]
We show a kinetically constrained many-body quantum system that has a natural implementation on Rydberg quantum simulators.
Despite featuring an uncorrelated infinite-temperature average stationary state, the dynamics displays coexistence of fast and slow space-time regions.
Our work establishes the large deviation framework for discrete-time open quantum many-body systems as a means to characterize complex dynamics and collective phenomena in quantum processors and simulators.
arXiv Detail & Related papers (2024-08-19T10:24:07Z) - Observation of a non-Hermitian supersonic mode on a trapped-ion quantum computer [6.846670002217106]
We demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems.<n>Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection.<n>We provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $Theta(log(n))$ time from certain initial states is exponentially hard on a quantum computer.
arXiv Detail & Related papers (2024-06-21T18:00:06Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.
We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Nonadiabatic nuclear-electron dynamics: a quantum computing approach [0.0]
We propose a quantum algorithm for the simulation of the time-evolution of molecular systems in the second quantization framework.
We show how the entanglement between the electronic and nuclear degrees of freedom can persist over long times if electrons are not adiabatically following the nuclear displacement.
The proposed quantum algorithm may become a valid candidate for the study of electron-nuclear quantum phenomena when sufficiently powerful quantum computers become available.
arXiv Detail & Related papers (2023-06-02T16:44:22Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Succinct Description and Efficient Simulation of Non-Markovian Open
Quantum Systems [1.713291434132985]
Non-Markovian open quantum systems represent the most general dynamics when the quantum system is coupled with a bath environment.
We provide a succinct representation of the dynamics of non-Markovian open quantum systems with quantifiable error.
We also develop an efficient quantum algorithm for simulating such dynamics.
arXiv Detail & Related papers (2021-11-05T03:35:50Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Unpredictability and entanglement in open quantum systems [0.0]
We show that unpredictability and quantum entanglement can coexist even in the long time limit.
We show that the required many-body interactions for the cellular automaton embedding can be efficiently realized within a variational quantum simulator platform.
arXiv Detail & Related papers (2021-06-14T18:00:12Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Non-adiabatic molecular quantum dynamics with quantum computers [0.0]
We propose a quantum algorithm for the simulation of fast non-adiabatic chemical processes.
In particular, we introduce a first-quantization method for the potential time evolution of a wavepacket on two harmonic energy surfaces.
arXiv Detail & Related papers (2020-06-16T18:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.