論文の概要: Machine Learning and Quantum Intelligence for Health Data Scenarios
- arxiv url: http://arxiv.org/abs/2410.21339v1
- Date: Mon, 28 Oct 2024 01:04:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:14.481588
- Title: Machine Learning and Quantum Intelligence for Health Data Scenarios
- Title(参考訳): 医療データシナリオのための機械学習と量子インテリジェンス
- Authors: Sanjeev Naguleswaran,
- Abstract要約: 従来の機械学習アルゴリズムは、高次元または限られた品質のデータセットでしばしば課題に直面している。
量子機械学習は、重ね合わせや絡み合いなどの量子特性を活用し、パターン認識と分類を強化する。
本稿では、QMLの医療への応用について検討し、心疾患予測とCOVID-19検出のための量子カーネル法とハイブリッド量子古典的ネットワークに焦点を当てた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The advent of quantum computing has opened new possibilities in data science, offering unique capabilities for addressing complex, data-intensive problems. Traditional machine learning algorithms often face challenges in high-dimensional or limited-quality datasets, which are common in healthcare. Quantum Machine Learning leverages quantum properties, such as superposition and entanglement, to enhance pattern recognition and classification, potentially surpassing classical approaches. This paper explores QML's application in healthcare, focusing on quantum kernel methods and hybrid quantum-classical networks for heart disease prediction and COVID-19 detection, assessing their feasibility and performance.
- Abstract(参考訳): 量子コンピューティングの出現は、データサイエンスの新たな可能性を開き、複雑でデータ集約的な問題に対処するユニークな機能を提供する。
従来の機械学習アルゴリズムは、医療で一般的な高次元または限定的なデータセットにおいて、しばしば課題に直面している。
量子機械学習は、重ね合わせや絡み合いなどの量子特性を活用し、パターン認識と分類を強化し、古典的なアプローチを超越する可能性がある。
本稿では、QMLの医療への応用について検討し、心臓疾患の予測とCOVID-19検出のための量子カーネル法とハイブリッド量子古典的ネットワークに注目し、その実現可能性と性能を評価する。
関連論文リスト
- LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [5.295820453939521]
量子機械学習の潜在的な応用は、古典的なデータを生成するために量子コンピュータのパワーを利用することである。
本稿では,自己エンコーダと結合したハイブリッド量子古典的GANを用いた新しい量子モデルであるLatntQGANを提案する。
論文 参考訳(メタデータ) (2024-09-22T23:18:06Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
本研究では,量子コンピューティングと機械学習(ML)の交わりについて検討する。
小型量子デバイスにおけるデータ再ロード方式やGAN(Generative Adversarial Networks)モデルなどのハイブリッド量子古典アルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-01T20:55:03Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
本稿では、量子コンピューティングの原理と古典的な機械学習アルゴリズムを統合する新しい量子混合状態注意ネットワーク(QMSAN)を紹介する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定することを可能にする。
本研究は,QMSANが低雑音に対する可換ロバスト性を有することを示すため,異なる量子雑音環境におけるモデルのロバスト性について検討した。
論文 参考訳(メタデータ) (2024-03-05T11:29:05Z) - Statistical Complexity of Quantum Learning [32.48879688084909]
本稿では,情報理論を用いた量子学習の複雑さについて概説する。
データ複雑性、コピー複雑性、モデルの複雑さに重点を置いています。
我々は、教師なし学習と教師なし学習の両方に対処することで、量子学習と古典学習の違いを強調する。
論文 参考訳(メタデータ) (2023-09-20T20:04:05Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
量子ニューラルネットワーク(QNN)と量子カーネルは、量子機械学習の領域において顕著な存在である。
我々は、QNNと量子カーネルのトレーニングを高速化することを目的とした、コアセット選択という統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T08:59:46Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。