論文の概要: Empirical Quantum Advantage Analysis of Quantum Kernel in Gene Expression Data
- arxiv url: http://arxiv.org/abs/2411.07276v1
- Date: Mon, 11 Nov 2024 15:34:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:41.103763
- Title: Empirical Quantum Advantage Analysis of Quantum Kernel in Gene Expression Data
- Title(参考訳): 遺伝子発現データにおける量子カーネルの量子アドバンテージ解析
- Authors: Arpita Ghosh, MD Muhtasim Fuad, Seemanta Bhattacharjee,
- Abstract要約: 量子優位性が達成可能な適切なデータセットを見つけることや、古典的および量子的手法によって選択された特徴の関連性を評価することなど、制約に重点を置いている。
生理的行動と疾患の感受性の制御において遺伝的変異が重要な役割を担った遺伝子発現データセットを実験的に選択した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The incorporation of quantum ansatz with machine learning classification models demonstrates the ability to extract patterns from data for classification tasks. However, taking advantage of the enhanced computational power of quantum machine learning necessitates dealing with various constraints. In this paper, we focus on constraints like finding suitable datasets where quantum advantage is achievable and evaluating the relevance of features chosen by classical and quantum methods. Additionally, we compare quantum and classical approaches using benchmarks and estimate the computational complexity of quantum circuits to assess real-world usability. For our experimental validation, we selected the gene expression dataset, given the critical role of genetic variations in regulating physiological behavior and disease susceptibility. Through this study, we aim to contribute to the advancement of quantum machine learning methodologies, offering valuable insights into their potential for addressing complex classification challenges in various domains.
- Abstract(参考訳): 機械学習分類モデルによる量子アンサッツの組み込みは、分類タスクのためのデータからパターンを抽出する能力を示している。
しかし、量子機械学習の計算能力の強化を生かして、様々な制約に対処する必要がある。
本稿では、量子優位性が達成可能な適切なデータセットの探索や、古典的および量子的手法によって選択された特徴の関連性評価などの制約に焦点をあてる。
さらに、ベンチマークを用いて量子および古典的なアプローチを比較し、実世界のユーザビリティを評価するために量子回路の計算複雑性を推定する。
生理的行動と疾患の感受性の制御において遺伝的変異が重要な役割を担った遺伝子発現データセットを実験的に選択した。
本研究は、量子機械学習手法の発展に寄与し、様々な領域における複雑な分類問題に対処する上で、その可能性についての貴重な洞察を提供することを目的としている。
関連論文リスト
- Machine Learning and Quantum Intelligence for Health Data Scenarios [0.0]
従来の機械学習アルゴリズムは、高次元または限られた品質のデータセットでしばしば課題に直面している。
量子機械学習は、重ね合わせや絡み合いなどの量子特性を活用し、パターン認識と分類を強化する。
本稿では、QMLの医療への応用について検討し、心疾患予測とCOVID-19検出のための量子カーネル法とハイブリッド量子古典的ネットワークに焦点を当てた。
論文 参考訳(メタデータ) (2024-10-28T01:04:43Z) - Quantum reservoir computing on random regular graphs [0.0]
量子貯水池コンピューティング(QRC)は、入力駆動多体量子システムと古典的な学習技術を組み合わせた低複雑性学習パラダイムである。
我々は、情報局在化、動的量子相関、および乱れハミルトニアンの多体構造について研究する。
そこで本研究では、乱れたアナログ量子学習プラットフォームの最適設計のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2024-09-05T16:18:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Benchmarking quantum machine learning kernel training for classification tasks [0.0]
本研究は、分類タスクに焦点を当てた量子カーネル推定(QKE)と量子カーネルトレーニング(QKT)のベンチマーク研究を行う。
ZZFeatureMapとCovariantFeatureMapという2つの量子特徴写像がこの文脈で分析される。
実験結果から、量子法は異なるデータセット間で様々な性能を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-08-17T10:53:06Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
量子ニューラルネットワーク(QNN)と量子カーネルは、量子機械学習の領域において顕著な存在である。
我々は、QNNと量子カーネルのトレーニングを高速化することを目的とした、コアセット選択という統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T08:59:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。